Endothelial-Derived Angiocrine Signals Induce and Sustain Regenerative Lung Alveolarization

Bi-Sen Ding,1 Daniel J. Nolan,1 Peipei Guo,1 Alexander O. Babazadeh,1 Zhongwei Cao,1 Zev Rosenwaks,2 Ronald G. Crystal,1 Michael Simons,3 Thomas N. Sato,4 Stefan Worgall,1 Koji Shido,1 Sina Y. Rabbany,1,5 and Shahin Rafii1,1

1Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine
2Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine
3Weill Cornell Medical College, New York, NY 10065, USA
4Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
5Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan

*Correspondence: srafi@med.cornell.edu
DOI 10.1016/j.cell.2011.10.003

SUMMARY

To identify pathways involved in adult lung regeneration, we employ a unilateral pneumonectomy (PNX) model that promotes regenerative alveolarization in the remaining intact lung. We show that PNX stimulates pulmonary capillary endothelial cells (PCECs) to produce angiocrine growth factors that induce proliferation of epithelial progenitor cells supporting alveologenesis. Endothelial cells trigger expansion of cocultured epithelial cells, forming three-dimensional angiospheres reminiscent of alveolar-capillary sacs. After PNX, endothelial-specific inducible genetic ablation of Vegfr2 and Fgfr1 in mice inhibits production of MMP14, impairing alveolarization. MMP14 promotes expansion of epithelial progenitor cells by unmasking cryptic EGF-like ectodomains that activate the EGF receptor (EGFR). Consistent with this, neutralization of MMP14 impairs EGFR-mediated alveolar regeneration, whereas administration of EGF or intravascular transplantation of MMP14-deficient mice restores alveologenesis and lung inspiratory volume and compliance function. VEGFR2 and FGFR1 activation in PCECs therefore increases MMP14-dependent bioavailability of EGFR ligands to initiate and sustain alveologenesis.

INTRODUCTION

Defining the cellular and molecular mechanisms that modulate lung regeneration is essential to develop strategies to treat respiratory disorders (Beers and Morrisey, 2011; Chapman, 2011; Metzger et al., 2008; Morris et al., 2003; Morrisey and Hogan, 2010; Warburton et al., 2010). To identify regulatory mechanisms involved in adult lung regeneration, we employed a model in which surgical removal of the left lung, known as left unilateral pneumonectomy (PNX), induces the expansion of mass and volume in the intact lobes of remaining right lung (Cowan and Crystal, 1975; Leuwerke et al., 2002; Nolen-Walston et al., 2008). This regenerative process is driven by alveologenesis, a process that is dependent on proliferation of epithelial progenitor cells (Kotton and Fine, 2008; Rock and Hogan, 2011; Stripp and Reynolds, 2008), which comprise subsets of alveolar epithelial cells (AECs) (Chapman et al., 2011; Liu et al., 2011) and presumably bronchioalveolar stem cells (BASCs) (Kim et al., 2005; Zhang et al., 2008). However, the precise mechanism(s) by which PNX initiates and sustains regenerative alveologenesis is unknown.

During lung development, the vascular plexus (capillary) sprouts in parallel with the alveolar budding (Cardoso, 2001; Metzger et al., 2008; White et al., 2007). As a unique organ that facilitates gas exchange, the lung alveolus is highly vascularized, with pulmonary capillary endothelial cells (PCECs) lining all alveoli and residing in proximity to AECs (Bhattacharya, 2005; Komarova and Malik, 2010; Muzykantov, 2005; Petracek et al., 2005; Voelkel et al., 2006). The formation of the alveolar-capillary interface is pivotal for pulmonary gas exchange function (Giodano et al., 2008; Huh et al., 2010; Petersen et al., 2010; Vapone-Ciyan et al., 1993). However, the role of PCECs as a specialized capillary vasculature in guiding alveolarization (DeLisser et al., 2006; Leuwerke et al., 2002), in particular during regenerative alveolar remodeling (Metzger et al., 2008), remains unknown.

Capillary endothelial cells (ECs) that form the building blocks of microvasculature of individual organs are endowed with organ-specific phenotypic and functional attributes (Aird, 2007; Carmeliet, 2005; Red-Horse et al., 2007; Ruoslahti and Rajotte, 2000). Capillary ECs are not solely passive conduits for the delivery of oxygen or nutrients; they also support organ development (Lammert et al., 2001; Matsumoto et al., 2001; Sakaguchi et al., 2008) and adult organ regeneration through elaboration.
of tissue-specific paracrine growth factors, defined as angiocrine factors (Butler et al., 2010a, 2010b).

For example, sinusoidal endothelial cells (SECs) within liver and bone marrow (BM) comprise phenotypically and functionally discreet populations of ECs. We have shown that, after partial hepatectomy, liver SECs (LSECs) through a process of “inducive angiogenesis”—that is, via angiocrine production of hepatocyte growth factor and Wnt2—stimulate hepatocyte proliferation (Butler et al., 2010). Subsequently, LSECs undergo “proliferative (sprouting) angiogenesis” to meet the incremental demand in blood supply to regenerating liver tissue. Similarly, after chemotherapy and irradiation, activated BM SECs reconstitute hematopoiesis by angiocrine expression of Notch ligands and IGFBPs (Butler et al., 2010b; Kobayashi et al., 2010). Conditional deletion of VEGF-A receptor-2 (VEGFR2) in either LSECs (Ding et al., 2010) or BM SECs (Hooper et al., 2009) of the adult mice inhibits liver and BM regeneration by impeding the production of angiocrine factors, underscoring the physiological importance of endothelial-derived instructive signals in adult organ regeneration. These findings raise the possibility that PCECs also comprise a functionally unique population of specialized ECs, which by production of lung-specific angiocrine factors, induce regenerative alveolarization.

In addition to their enduring capacity to undergo proliferative sprouting angiogenesis to vascularize alveoli (Alvarez et al., 2008; Del Moral et al., 2006; Shu et al., 2002), PCECs specify the differentiation of endoderm and mesoderm progenitors into primitive lung epithelial and vascular precursor cells by producing paracrine factors (Bhattacharya, 2005; Yamamoto et al., 2007). These findings suggest that PCECs may promote alveologenesis by elaborating angiocrine growth signals. Whether PCEC-derived instructive signals can trigger regenerative alveolarization in the adult lungs has, however, not been studied. Indeed, the paucity of mouse lung regenerative genetic markers has hampered studies of PCECs in guiding alveolar regeneration in adult lungs.

In this study, we have defined the phenotypic and operational markers of mouse PCEC population as VE-cadherin*VEGFR2*FGFR1*CD34+ ECs. We employ a unilateral pneumonectomy (PNX) model to investigate the role of PCECs in supporting alveolar regeneration. Surgical resection of the left lung, which does not perturb the vascular integrity of the remaining right lobes, induces regrowth of these residual lobes. Here, we demonstrate that PNX through activation of VEGFR2 and FGFR1 induces PCECs of the remaining right lobes to produce the angiocrine matrix metalloprotease MMP14. In turn, MMP14 promotes regenerative alveolarization by unmasking cryptic epidermal growth factor (EGF)-like ligands that stimulate proliferation of epithelial progenitor cells. These data suggest that PCECs could be therapeutically exploited for the treatment of lung disorders.

RESULTS

PNX Induces Expansion of Epithelial Progenitor Cells

Within 15 days after PNX, there is a dramatic regeneration in the mass and volume of remaining right lung lobes (Figures 1A and 1B). Lung epithelial progenitor cells, including subsets of BASCs identified by Clara cell-secreted protein (CCSP)*pro-surfactant protein C (SPC)*Sca-1+ (CCSP*SPC*Sca-1+) cells and type II AECS (AECIIs) by SPC*E-cadherin+ cells contribute to alveolar epithelialization (Beers and Morrisey, 2011). To determine the contribution of epithelial progenitor cells to lung regeneration, after PNX, we introduced BrdU in drinking water to detect slow-cycling cells. On day 3 after PNX, we observed amplification of BrdU*CCSP+ cells at bronchoalveolar duct junction (BADJ) (Figure 1C). To track expansion of BrdU*CCSP+ cells, we used reporter transgenic mice in which CCSP and SPC promoters drive YFP expression (CCSP-YFP and SPC-YFP mice) (Perl et al., 2002) (Figures 1D and 1E). We performed polyvariate flow cytometric analysis of all mononuclear cells in regenerating lungs on day 3 after PNX. The CCSP*BrdU+ cells localized to the BADJ region were CCSP*SPC*Sca-1+VE-cadherin*CD31 cells, a phenotypic signature observed on BASCs (Kim et al., 2005). At this early time point, we did not detect proliferation of SPC*Sca-1+CCSP+AECIIs or VE-cadherin*CD31+ PCECs. Therefore, PNX induces expansion of slow-cycling CCSP*SPC*Sca-1+ BASC-like cells in early phases of lung regeneration, when there is minimal proliferation of AECs and PCECs.

PNX Stimulates Expansion of PCECs and AECs Co-localizing at the Alveolar-Capillary Interface

To identify time points after PNX when AECs and PCECs undergo significant proliferation, we examined the kinetics of incorporation of intraperitoneally injected BrdU in the remaining lobes and found a global appearance of transit amplifying cells (TACs) that peaked at day 7 after PNX (Figure 2A and Figure S1 available online). In shamb operated mouse lungs, there was little uptake of BrdU. To characterize cell types in TACs on day 7 after PNX, we performed PNX on SPC-YFP reporter mice. There was increased proliferation of SPC+ cells that coexpress pro-surfactant protein D (SPD) and E-cadherin, markers representing AECIIs (Beers et al., 1994; Whitsett et al., 2010) (Figure 2B).

The remaining SPC–TACs consist of small fraction of CCSP+ airway Clara cells (Rawlins et al., 2009) and VE-cadherin+ PCECs. Analysis of BrdU incorporation showed that, on day 7 after PNX, proliferating VE-cadherin*CD34+FGFR1+VEGFR2*CD45+ PCECs accounted for 7% of mononuclear cells (Figure 2C), which were localized to the vicinity of SPC+ AECIIs (Figure 2D). Using SPC+E-cadherin+ and VE-cadherin*CD34+ as operational markers for AECIIs and PCECs, respectively, we found that, on day 15, after PNX there was a 3-fold increase in the population of both AECIIs and PCECs (Figure 2E). Therefore, after PNX, the increase in lung mass and volume is due to proliferation of PCECs and epithelial progenitor cells, with BASC-like cells expanding at early time point (day 3) and AECIIs proliferating at later time points (Figure 2F).

Sequential Activation of VEGFR2 and FGFR1 in PCECs Is Essential for Functional Alveolar Regeneration

One mechanism by which PNX initiates lung regeneration could be through activation of PCECs to produce epithelial-active angiocrine factors. As VEGFR2, the principal tyrosine kinase receptor of VEGF-A, plays a critical role in induction of angiocrine
factors (Ding et al., 2010; Hooper et al., 2009), we analyzed the activation of VEGFR2 in PCECs after PNX. Although VEGFR2 protein level in PCECs is unaltered, after PNX, the extent of phosphorylated VEGFR2 is increased, indicating activation of this VEGF-A receptor in the ECs of regenerating right lobes (Figure 3A).

Because FGFR1 is expressed in PCECs and can reciprocally modulate the expression and activation state of VEGFR2...
A. PNX Day 5, PNX Day 7, Sham Day 7
 - BrdU, Nuclei (BrdU injected)

B. PNX Day 7 (SPC-YFP)
 - SPD, VE-cadherin, CCSP

C. PNX Day 7
 - E-cadherin, VEGFR2, CD45, CD34, FGFR1

D. Sham Day 7, PNX Day 7
 - BrdU, VE-cadherin, SPC

E. Cell number per right lung (x 1,000,000)
 - Sham Day 15, PNX Day 15

F. Schematic diagram:
 - SPC, AECII, BASC
 - PNX, BASC expansion, PCEC proliferation, AEC proliferation
 - Regenerative alveolarization

PCEC
 - Day 3, Day 7, Day 15
(Murakami et al., 2011; White et al., 2007) to drive angiocrine factor production, we also studied the expression of FGFR1 by PCECs. After PNX, FGFR1 protein was upregulated in a time-dependent manner. Thus, whereas in early phases of lung regeneration, activation of VEGFR2 in PCECs initiates alveogenesis, at later phases, coactivation of FGFR1 might synergize with VEGFR2 to sustain regenerative epithelialization.

To elucidate the endothelial-specific function of VEGFR2 and FGFR1 in the lungs, we employed an inducible knockout strategy to selectively delete the Vegfr2 gene in adult mouse ECs (Figure 3B), using transgenic mice in which the VE-cadherin promoter drives expression of tamoxifen-responsive Cre (VE-CadCreERT2) (Wang et al., 2010). Tamoxifen treatment selectively deletes Vegfr2 in ECs (Vegfr2EC/i mice). To account for off-target toxicity by CreERT2, we used heterozygous Vegfr2-deficient (Vegfr2ΔEC/) mice as control. We also generated mice in which both Vegfr2 and Fgfr1 were deleted in ECs. However, because these mice could not tolerate surgical procedures because of vascular instability, we investigated the role of coactivation of FGFR1 and VEGFR2 in supporting alveogenesis by inducible Vegfr2 and partial Fgfr1 deletion in ECs (Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC mice).

Before PNX, Vegfr2ΔEC/ΔEC and Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC mice did not manifest alterations in lung mass or function (Figure S2). By contrast, on day 3 after PNX, proliferation of CCSP+ Sca1+ BASC-like cells was abolished in Vegfr2ΔEC/ΔEC mice (Figures 3C and S2), whereas there was no further inhibition in expansion of these cells in Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC mice after PNX. These data establish the critical role of Vegfr2 activation in supporting epithelialization at early phases of lung regeneration.

We then studied the role of Vegfr2 and Fgfr1 coactivation in amplification of PCECs and AECIIs. Coostraining of regenerating lungs with BrdU, VE-cadherin, and SPC at day 7 indicated that endothelial-specific knockdown of Vegfr2 in mice (Vegfr2ΔEC/ΔEC mice) abolished propagation of both PCECs and AECIIs (Figures 3D and 3E). Notably, endothelial-specific knockdown of Vegfr2 and Fgfr1 (Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC) further abolished proliferation of PCECs and AECIIs at this time point, suggesting that Fgfr1 synergizes with Vegfr2 in stimulating PCECs to support AEII amplification and neangiogenesis.

Deletion of Vegfr2 and Fgfr1 in PCECs Impairs Restoration of Alveolar Structure and Function

To determine whether coactivation of Vegfr2 and Fgfr1 plays a role in improving lung function, we examined inspiratory volume and static compliance in Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC and control mice before and after PNX. These parameters of pulmonary function provide physiologically relevant indices of respiratory capacity. The restoration of pulmonary function after PNX was significantly impaired in Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC mice at a time point when control mice exhibited complete recovery (Figure 3F). Similarly, restoration of lung mass, volume, and cell expansion after PNX were all impaired in Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC mice (Figure 3G). These data indicate that, after PNX, nonproliferating VE-cadherin+ ECs induce early expansion of BASC-like cells via Vegfr2 activation. At later phases after PNX, upregulation of Fgfr1 in conjunction with Vegfr2 activates PCECs to instruct epithelialization as well as vascular sprouting, restoring respiratory capacity (Figure 3H). Thus, PCECs produce angiocrine factors and participate in angiogenesis fostering generation of functional respiratory alveolar units.

PNX Induces Specific Upregulation of MMP14 in PCECs Expanding Epithelial Progenitor Cells

To identify the inductive angiocrine cue that initiates epithelialization, we compared the gene expression profiles of the regenerative lungs (Table S1) and found that, among angiocrine factors, membrane-type 1 matrix metalloproteinase (MMP14) was specifically upregulated in PCECs of wild-type, but not Vegfr2ΔEC/ΔEC or Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC, mice (Figure S3). Analysis of MMP14 protein level in the pneumonectomized lungs revealed its temporal upregulation that peaks at day 7 and levels off afterward (Figure 4A). Immunostaining and flow cytometric analysis illustrated the PCEC-specific localization of MMP14 after PNX, which was diminished in the Vegfr2ΔEC/ΔECFgfr1ΔEC/ΔEC lungs (Figures 4B and 4C). MMP14 was not upregulated in other vascular rich organs, including liver, heart, spleen, and kidney (Figure S3), indicating that, after PNX, MMP14 is selectively upregulated in VEGFR2- and FGFR1-activated PCECs.

To define the mechanism by which angiocrine expression of MMP14 promotes the propagation of epithelial progenitor cells, we isolated AECIIs and BASCs from SPC-YFP and CCSP-YFP mice, respectively, and cocultured with primary ECs. YFP expression was utilized to track their fate during coculture. The E4ORF1 gene, which through activation of the Akt pathway maintains angiocrine capacity, was introduced into primary ECs (Seandel et al., 2008, Kobayashi et al., 2010). Because MMP14 was upregulated in MAP kinase-activated ECs, we also introduced c-Raf to constitutively stimulate MAP kinase...
Figure 3. Inducible Deletion of Vegfr2 and Partial Knockdown of Fgfr1 in ECs Attenuates Lung Regeneration

(A) Sequential activation of VEGFR2 and upregulation of FGFR1 in PCECs after PNX. VEGFR2 phosphorylation is increased by PNX, whereas total VEGFR2 expression in PCECs remains constant. In contrast, FGFR1 expression in PCECs is upregulated after PNX in a time-dependent manner.

(B) EC-specific knockout of VEGFR2 and FGFR1 in adult mice. Transgenic mice in which VE-cadherin promoter drives expression of tamoxifen-responsive CreERT2 (VE-Cad-CreERT2 mice) were crossed with Vegfr2^{loxP/loxP} and Fgfr1^{loxP/loxP} mice and treated with tamoxifen to induce EC-specific deletion of Vegfr2 and Fgfr1 (Vegfr2^{iD}EC/iD^{EC} and Vegfr2^{iD}EC/Fgfr1^{iD}EC/+ mice).

(C) EC-specific deletion of Vegfr2 (Vegfr2^{iD}EC/iD^{EC} mice) inhibits the expansion of CCSP^{Sca1} BASC-like cells after PNX. Vegfr2^{iD}EC/+ mice served as control.

(D and E) Defective proliferation of both PCECs (red arrowheads) and AECs (yellow arrows) in Vegfr2^{iD}EC/iD^{EC} Fgfr1^{iD}EC/+ mice as compared to control Vegfr2^{iD}EC/+ mice.

(F) After PNX, EC-specific deletion of Vegfr2 and Fgfr1 impaired the recovery of pulmonary function. The restoration of pulmonary function in Vegfr2^{iD}EC/iD^{EC} Fgfr1^{iD}EC/+ mice was significantly inhibited compared to control mice. Note the normal pulmonary function of knockout mice before PNX. #p < 0.01, compared to control Vegfr2^{iD}EC/+ mice. n = 4.

(G) Restoration of lung mass and volume is impaired in Vegfr2^{iD}EC/iD^{EC} Fgfr1^{iD}EC/+ mice. n = 4.

(H) Proposed model of PCEC-mediated regulation of regenerative alveolarization. Activation of VEGFR2 in PCECs instigates the early expansion of BASCs, whereas there is minimal proliferation of PCECs. Subsequent upregulation of FGFR1 along with VEGFR2 activation sustains proliferation of PCECs and AECs that peaks at day 7. PCECs through neovascularization and inducing AEC expansion complete regeneration of the right lungs by day 15 after PNX.

See also Figure S2.
in E4ORF1 ECs (MAPK+Akt ECs) (Kobayashi et al., 2010). Next, MAPK+Akt ECs were cocultured with AECs/BASCs in three-dimensional (3D) angiosphere assay. Coculture with MAPK+Akt ECs led to the most significant expansion of SPC+ AECs and CCSP+Sca-1+CD31+BASCs (Figures 4D–4G and S3), resulting in formation of 3D angiospheres, with ECs encircling expanding...
epithelial cells, that resemble the structure of an alveolar-capillary sac. MMP14 knockdown in MAPK+Akt ECs abolished expansion of BACs and AEClls (Figures 4D and 4F). Conditioned medium (CM) from MAPK+Akt ECs showed a negligible effect in promoting AECll and BASC propagation, underscoring the requirement for cell-cell contact between ECs and epithelial cells (Figures 4E and 4G). Therefore, resection of the left lung activates VEGFR2 and FGFR1 on PCECs triggering MMP14 production, which in turn stimulates propagation of epithelial progenitor cells.

After PNX, MMP14 Inhibition Abrogates the Reconstitution of AECs, but Not PCECs

To determine the physiological significance of MMP14 in modulating alveologenesis, we injected wild-type (WT) mice with a neutralizing monoclonal antibody (mAb) to MMP14. After PNX, the MMP14 mAb attenuated the increase of mass and volume of remaining lungs in WT, but not Vgrf2ΔEC/iFGfr1ΔEC/+ mice, indicating that MMP14 is derived from VEGFR2- and FGFR1-activated PCECs (Figures 5A and S4). MMP14 inhibition blocked expansion of E-cadherin+ AECs without impairing reconstitution of VE-cadherin+ PCECs (Figure 5B). The mismatched expansion of AECs and PCECs after MMP14 inhibition indicates that MMP14 induces propagation of AECs (inductive angiogenesis), rather than promoting PCEC proliferation (proliferative angiogenesis).

The reduced expansion of AECs, but not PCECs, by MMP14 neutralization was further demonstrated by flow cytometric analysis (Figures 5C and 5D). Furthermore, in mice injected with mAb to MMP14, morphological examination revealed inhibition of alveolar regrowth, as evidenced by a decrease in alveolar number and increase in alveolar size measured by mean alveolar intercept (Figures 5E and 5F). Collagen synthesis remained unchanged in mice injected with mAb to MMP14 (Figure S4). Therefore, PCEC-derived MMP14 stimulates neovalveolarization, forming alveolar sacs reminiscent of normal adult alveoli.

MMP14 Stimulates Alveologenesis via Unmasking of Cryptic EGFR-like Ligands

We next sought to unravel the mechanism by which MMP14 regulates regenerative alveologenesis. MMP14 has been shown to shed the ectodomain of heparin binding EGFR-like growth factor (HB-EGF) (Koshikawa et al., 2010; Stratman et al., 2010). In addition, MMP14 cleaves laminin5 γ2 chain to generate an EGFR-like fragment that activates EGFR receptor (EGFR) (Schenk et al., 2003). We found that, at days 3 and 7 after PNX, HB-EGF in bronchoalveolar lavage fluid (BALF) is increased (Figures 6A and 6B). The cleaved fragment of laminin5 γ2 chain appeared in regenerating lungs at day 7 after PNX (Figures 6C and S5). However, the level of these EGFR ligands was decreased in both control mice treated with mAb to MMP14 and Vgrf2ΔEC/iFGfr1ΔEC/+ mice, in which there is diminished expression of MMP14. Knockdown of MMP14 in MAPK+Akt ECs in 3D endothelial coculture with BASCs and AEClls also abrogated the release of EGFR ligands to culture supernatant (Figure S5). Hence, after PNX, activation of VEGFR2 and FGFR1 in PCECs leads to angiocrine production of MMP14, which in turn unmasks cryptic EGFR ligands stimulating alveolar regeneration.

EGF Restores Alveolar Epithelialization in Vgrf2ΔEC/iFGfr1ΔEC/+ Mice

Both shedded HB-EGF and cleaved laminin5 γ2 chain activate EGFR that drives epithelialization. Our findings suggest that, after PNX, impaired lung alveologenesis in Vgrf2ΔEC/iFGfr1ΔEC/+ mice is due to a decrease in bioavailability of EGFR ligands, implicating that injection of EGF might restore alveologenesis in Vgrf2ΔEC/iFGfr1ΔEC/+ mice by enhancing epithelialization. Intravenous injection of recombinant EGF restored lung mass and volume in Vgrf2ΔEC/iFGfr1ΔEC/+ mice and mice treated with mAb to MMP14 (Figures 6D and S5). Direct introduction of EGF to bronchoalveolar epithelium via intrastrachal injection showed a similar effect in rescuing alveolar regeneration (Figure S5). Therefore, the defective regeneration of AECs in Vgrf2ΔEC/iFGfr1ΔEC/+ mice (Figure 3) is caused by diminished MMP14 production by PCECs that attenuates bioavailability of EGFR ligands.

Notably, in Vgrf2ΔEC/iFGfr1ΔEC/+ mice injected with EGF, cellular association of E-cadherin+ AECs with VE-cadherin+ PCECs was enhanced (Figures 6E and S5), restoring pulmonary function (Figure 6F). EGF injection into Vgrf2ΔEC/iFGfr1ΔEC/+ mice stimulated regeneration of AECs, but not PCECs (Figure S5), suggesting that EGF has a minor effect in triggering angiogenesis while being more effective in driving epithelialization. To test this hypothesis, we analyzed the effect of EGF administration on cell amplification at day 7 after PNX. Injection of EGF led to enhanced EGFR phosphorylation in the Vgrf2ΔEC/iFGfr1ΔEC/+ lung (Figure 6G). BrdU incorporation analysis revealed that EGF restored proliferation of AEClls, but not PCECs, in Vgrf2ΔEC/iFGfr1ΔEC/+ mice (Figures 6H and 6I). Thus, the alveologenic defect in Vgrf2ΔEC/iFGfr1ΔEC/+ mice is due to impaired generation of epithelially active angiocrine factors, rather than compromised vascular perfusion to regenerating lung.

Transplantation of Wild-Type PCECs Restores Alveologenesis in Vgrf2ΔEC/iFGfr1ΔEC/+ Mice

In our study, pan-endothelial VE-cadherin promoter-driven expression of CreERT2 could delete Vgrf2 and FGfr1 in ECs of other vascular beds. To investigate the specific contribution of activated PCECs to lung regeneration, we designed a lung EC transplantation model. ECs were purified from either lung or liver of pneumonectomized WT littermate mice and were infused into the jugular vein of Vgrf2ΔEC/iFGfr1ΔEC/+ and Vgrf2ΔEC/iFGfr1ΔEC/+ mice (Figure 7A). Plasma was also collected from pneumonectomized WT mice and injected to recipient knockout mice to interrogate the contribution of systemic soluble growth factors to lung regeneration.

Transplanted GFP+ ECs incorporated into ~26% of pulmonary capillaries of recipient mice (Figures 7B and S6). Importantly, the engrafted ECs obtained from the pneumonectomized lungs, but not the liver, restored the amplification of epithelial cells (Figures 7C–7F and S6). Proliferating BrdU+CCSP+ BASC-like cells and BrdU+SPC+ AEClls were positioned in the proximity of the transplanted GFP+ PCECs, indicating that inductive signals derived...
from the infused WT PCECs restore lung regeneration. Accordingly, pulmonary function was improved by transplantation of PCECs, but not injection of plasma procured from pneumonectomized WT mice (Figure 7G). Therefore, PNX induces a lung-specific activation of PCECs to elaborate angiocrine factors that support regenerative lung alveolarization (Figure 7H).

DISCUSSION

After PNX, Activation of PCECs Supports Expansion of Epithelial Progenitor Cells
We have employed a PNX-induced alveolar regeneration model, endothelial-specific knockdown of Vegfr2 and Fgfr1, and 3D...
Figure 6. Angiocrine Production of MMP14 Induces Alveologenesis by Shedding EGF-like Ectodomains from HB-EGF and Laminin5 γ2 Chain

(A and B) PNX induced time-dependent release of HB-EGF into alveolar space, which is inhibited in Vegfr2^{IAEC/IAEC} mice or by MMP14 neutralization. Representative western blot image is shown in (A). Control Vegfr2^{IAEC/IAEC} mice treated with neutralizing mAb to MMP14 (MMP14 mAb). BAL, bronchioalveolar lavage; BALF, BAL fluid. n = 4.

(C) At day 7 after PNX, activation of VEGFR2 and FGFR1 in PCECs upregulated MMP14, causing cleavage of laminin5 γ2 chain.

(D–F) EGF injection restored: (1) regeneration of lung mass and volume (D), (2) integration of E-cadherin⁺ AECs within the capillary (E), and (3) pulmonary function measured by inspiratory volume and static compliance (F) in Vegfr2^{IAEC/IAEC} mice after PNX. Note the enhanced association of SPC/C0E-cadherin⁺ AECIs (red arrowhead) and SPC⁺E-cadherin⁺ AECIs (yellow arrow) with the capillary. n = 4. Scale bar, 100 μm.

(G–I) At day 7 after PNX, intravenous EGF injection restored EGFR phosphorylation (G) and increased proliferation of SPC⁺ AECIs (H and I) in the Vegfr2^{IAEC/IAEC} lung. Note the augmented proliferation in SPC⁺ AECIs (white arrow). Quantification of amplifying cell population after PNX is shown in (I). n = 4. Scale bar, 100 μm.

See also Figure S5.
Figure 7. Transplantation of Wild-Type PCECs Restores Defective Alveolar Regeneration in Mice Deficient in Endothelial Vegfr2 and Fgfr1

(A) EC transplantation strategy to define contribution of PCECs in promoting alveolar regeneration. After PNX, ECs were purified from the lung and liver of WT littermates, transduced with lentiviral GFP, and transplanted via the jugular vein into pneumonectomized Vegfr2^{ΔEC}/ΔEC and Vegfr2^{ΔEC}/ΔEC Fgfr1^{ΔEC}/+ mice at days 3 and 7, respectively.

(B) Incorporation of transplanted GFP⁺ PCECs into functional lung capillary. Intravenous infusion of vascular-specific isolectin was used to identify patent vasculature. Note the presence of perfused isolectin^{GFP}+ PCECs, indicating functional incorporation of transplanted WT PCECs into recipient Vegfr2^{ΔEC}/ΔEC Fgfr1^{ΔEC}/+ capillaries. Scale bar, 100 μm.

(C and D) Restoration of expansion potential of CCSP⁺ BASC-like cells in Vegfr2^{ΔEC}/ΔEC mice after PCEC transplantation. Note in (D) the unique localization of proliferating BrdU⁺ CCSP⁺ BASC-like cells (red arrow) that is in close proximity to transplanted GFP⁺ PCECs (green arrow).

(E–G) Transplantation of WT PCECs restores proliferation of SPC⁺ AECs (E and F) and pulmonary function (G) in Vegfr2^{ΔEC}/ΔEC Fgfr1^{ΔEC}/+ mice. Expanding BrdU⁺ SPC⁺ AECs (red arrow) were detected in close cellular association with transplanted PCECs (green arrow) (F).

(H) Proposed model illustrating the inductive role of Vegfr2- and Fgfr1-primed PCECs in lung regenerative alveolarization. Upon PNX, activation of Vegfr2 in PCECs leads to MMP14 production and HB-EGF release to stimulate the expansion of epithelial progenitor cells (BASCs and AECIIs). Subsequent activation of Fgfr1 along with Vegfr2 stimulates proliferation of PCECs maintaining MMP14 expression. MMP14 unmasks cryptic EGFR ligands through shedding of HB-EGF and cleaving laminin γ2 chain, which by activating EGFR, induces proliferation of SPC⁺E-cadherin⁺ AECs. After PNX, sequential propagation of epithelial cells induced by PCEC-derived MMP14 and increase in bioavailability of EGFR-ligands culminate in full reconstitution of functional alveolar-capillary sacs. Proliferation of PCECs vascularizes the regenerating lung tissue to restore the blood supply and gas exchange function.

See also Figure S6.
endothelial-epithelial coculture angiosphere bioreactors to establish the essential role of the PCECs in promoting regenerative alveologenesis. We have uncovered the angiocrine role of MMP14, which by shedding HB-EGF and generating an EGF-like fragment from laminin5 γ2 chain, stimulates amplification of lung epithelial progenitor cells, including subsets of BASCs and AECs, supporting alveolarization. The role of MMP14/EGFR activation in promoting alveologenesis was borne out in studies in which EGF administration into Vegfr2+/AECi−/AEC Fgfr1+/AECi− mice restored alveolar regeneration after PNX. Moreover, we established a lung PEC transplantation model to define the essential role of functionally incorporated PCECs in restoring epithelialization in mice with impaired capacity to undergo neoalveolarization. Taken together, we have demonstrated that, after PNX, PCECs orchestrate regenerative alveologenesis by formation of new vessels and through instructive production of epithelial-active angiocrine factors.

PNX induced alveolar regeneration via amplification of epithelial progenitor cells. At early phases (day 0–3), PNX induces expansion of CSCSPSCA−/CD31−VE-cadherin− BASC-like cells localized at BADJ. At later phases (day 7–15), SPC-E-cadherin+ AECs and PCECs expand, reestablishing functional alveolar-capillary units. Upon MMP14 inhibition, loss of alveolar coverage of not only cuboidal SPC-E-cadherin+, but also squamous SPC E-cadherin+ AEC, implicates that transiently amplified SPC-E-cadherin+ AECs potentially generate SPC-E-cadherin+ type I AECs (Beers and Morrisey, 2011; Morrissey and Hogan, 2010; Rock and Hogan, 2011), leading to full reconstitution of alveolar surface after PNX. Therefore, activated PCECs drive regeneration of specialized lung epithelial cells that collectively rebuild functional alveolar-capillary sacs.

PECs Initiate Alveologenesis through MMP14-Mediated Release of EGF Ligands

We show that PEC-derived MMP14 is required for the expansion of epithelial cells and restoration of alveolar structure and pulmonary function. In mouse fetal lung, MMP14 regulates alveolar formation (Atkinson et al., 2005; Irie et al., 2005; Oblender et al., 2005; Greenlee et al., 2007) by provoking epithelial proliferation and migration (Chun et al., 2006; Hiraoka et al., 1998; Stratman et al., 2009; Yana et al., 2007). Postnatally, MMP14-deficient mice exhibit defective alveolarization, abnormal saculation, and impaired vascular integration with AECs, suggesting that MMP14 mediates alveolar-capillary crosstalk (Lee et al., 2004; Li et al., 2002; Morris et al., 2003; Page-McCaw et al., 2007). Here, we show that, after PNX, inhibition of MMP14 interfered with alveolar regrowth, but not endothelial proliferation, leading to enlarged alveolar size. This suggests that MMP14 is dispensable for proliferative angiogenesis but plays a key role in inducing regenerative alveolarization. The mechanism by which MMP14 modulates alveologenesis involves shedding of HB-EGF into the alveolar space and generation of an EGF-like fragment from laminin5 γ2 chain. Subsequently, an increase in bioavailable EGFR ligands initiates regeneration of epithelial progenitors. In this regard, MMP14 performs as a PEC-specific angiocrine cue that drives regenerative alveolarization.
by a lack of understanding of lung regeneration mechanisms (Jiang et al., 2005; Kajstura et al., 2011; Matthey and Zemans, 2011; Morris et al., 2003; Petracek et al., 2005; Whitsett et al., 2010). We have set forth the concept that, after PNX, activated PCECs play a seminal role in restoring respiratory capacity, as measured by inspiratory volume and static compliance. Notably, administration of EGF or transplantation of activated PCECs improved respiratory function in mice. It is plausible that transplantation of properly activated PCECs or injection of lung-specific angiocrine mediators could improve lung function in subsets of patients with pulmonary disorders.

In conclusion, we have introduced the concept that PCECs not only form passive vascular conduits to fulfill the metabolic demands of regenerating lungs, but also, by relaying inductive angiocrine growth signals such as MMP14, orchestrate regenerative alveologenesis. Selective activation of VEGFR2 and FGFR1 is carried out as described (Jiang et al., 2005; Kajstura et al., 2011; Matthay and Zemans, 2011). AECs and PCECs were quantified by flow cytometric analysis.

EXPERIMENTAL PROCEDURES

Transgenic Reporter and Gene-Targeted Animals

Generation of endothelial-specific Vegfr2- and Fgfr1-inducible knockout mice was carried out as described (Hooper et al., 2009; Wang et al., 2010). In brief, Vegfr2loxP/loxP and Fgfr1loxP/loxP mice were bred with VE-cadherin-CreERT2 transgenic mice to establish VE-cadherin-CreERT2VEgfr2loxP/loxP and VE-cadherin-CreERT2VEgfr2loxP/loxPmTEgfr1loxP/+ mice. These mice were treated i.p. with tamoxifen, leading to endothelial-specific deletion of Vegfr2 and Fgfr1.

Mice bearing SPC and CCSP promoter-driven rtTA (SPC-rtTA and CCSP-rtTA) and (tetO)7CMV-driven cre (tetO)-cre (Perl et al., 2002) were crossed with Rosa26R-eYFP mice as described (Rawlins et al., 2009), resulting in SPC-YFP and CCSP-YFP reporter mice upon tetracycline treatment. All experiments were carried out under guidelines set by Institutional Animal Care and Use Committee.

PNX Model and Physiological Measurements of Lung Mechanics

PNX procedure was adapted as described (Nolen-Walston et al., 2008). In brief, orotracheal intubation was performed in anesthetized and mechanically ventilated mice. Left lung lobe was lifted with a suture tied around the hilum and resected. Sham mice underwent thoracotomy without lobe resection. Lung mass and volume were measured and normalized to body weight after PNX. Isolation of PCECs and examination of phosphorylation and protein level of VEGFR2 and FGFR1 was carried out as described (Ding et al., 2010; Murakami et al., 2011). Inspiratory capacity was measured between the plateau pressure measurements of the lung capacity (TLC) and functional residual capacity (FRC) using the Flexivent software (Scireq). Static compliance was determined from pressure-volume curves.

Immunofluorescence and Flow Cytometric Analysis

To perform immunofluorescence (IF) studies, cryopreserved sections were incubated in antibodies recognizing VE-cadherin (R&D), CD34 (BD), E-cadherin (eBiosciences), and SPC (Abcam) and fluorophore-conjugated second antibodies (Jackson Immuno Research). Transit cell amplification was measured by BrdU uptake (Ding et al., 2010). To track proliferating BASC-like cells, BrdU was introduced in drinking water (Nolen-Walston et al., 2008). Images were captured on AxioVert LSM710 microscope (Zeiss). Morphological analysis of alveolar number and mean linear intercept was performed (DeLisser et al., 2008). Total lung cells were isolated and analyzed on LSRII-SORTP (BD) (Ding et al., 2010). AECs and PCECs were quantified by staining with conjugated antibodies against SPC+E-cadherin and VE-cadherin+CD34, respectively.

Pharmaceutical Administration of EGF and Neutralizing mAb to MMP14

Mice were injected with mAb to mouse MMP14 (MMP14 mAb, 50 mg/kg, Abcam) and IgG control 12 hr before PNX and every other day. To determine the role of recombinant EGF in alveolar regeneration, mice were i.v. injected with 500 μg/kg EGF (Abcam) on a daily basis after PNX. Mice were also intratracheally injected with 100 μg/kg EGF (in 50 μl) every other day to test the local effect of EGF.

Determination of AECl and BASC Proliferation in Coculture with Primary Ecs

To maintain Akt activation, primary Ecs were transduced with E4ORF1 gene (Seandel et al., 2008). To coactivate MAPKinase pathway, c-Raf was introduced in primary E4ORF1+ Ecs. The result MAPK+Akt Ecs (Kobayashi et al., 2010) were cocultured with AEClis and BASCs isolated from SPC and CCSP-YFP mice (Kim et al., 2005). Mmp14 or scrambled shRNA was used to knock down Mmp14 in MAPK+Akt Ecs or Eacs (Ding et al., 2010). For coculture studies, isolated SPC+ AEClis and BASCs were plated in nonadherent dish seeded with 10-fold more MAPK+Akt Ecs. Conditioned medium from MAPK+Akt Ecs was added to AEClis. After coculture, AEClis and BASCs were quantified by flow cytometric analysis.

gPCR, ELISA, and Immunoblot Analyses

After PNX, total RNA was isolated from the mouse lungs to perform qPCR using Taqman expression systems (Applied Biosystems). HB-EGF concentration in BALF was examined by sandwich ELISA and western blot using anti-HB-EGF antibodies (Santa Cruz), and cleavage of laminin γ2 chain was tested with antibody against γ2 chain (Santa Cruz).

Data Analysis

All data are presented as mean ± SEM. Differences between groups were tested for statistical significance using Student’s t test or analysis of variance (ANOVA). Statistical significance was set at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and one table and can be found with this article online at doi:10.1016/j.cell.2011.10.003.

ACKNOWLEDGMENTS

B.-S.D. is a Druckenmiller Fellow of New York Stem Cell Foundation, S.R. is supported by Ansary Stem Cell Institute; Howard Hughes Medical Institute; Empire State Stem Cell Board and New York State Department of Health grants (NYSSTEM, C024180, C026438, C026878); National Heart Lung and Blood Institute; Qatar National Priorities Research Foundation NPRP08-663-3-140; and Anbinder and Newmans Own Foundation. T.N.S. is supported by Ansary Stem Cell Institute; Howard Hughes Medical Institute; Empire State Stem Cell Board and New York State Department of Health grants (NYSSTEM, C024180, C026438, C026878); National Heart Lung and Blood Institute; Qatar National Priorities Research Foundation NPRP08-663-3-140; and Anbinder and Newmans Own Foundation. T.N.S. is supported by Takeda Science Foundation, Uehara Memorial Foundation, JSPS (Kiban S). M.S. is supported by R01HL53793. VE-Cad-CreERT2 mice were gift from Dr. Ralf H. Adams (Max Planck Institute). SPC/CCSP-rtTA and (tetO)-cre mice were provided by Drs. Jeffrey A. Whitsett and Anne-Karina T. Perl (Cincinnati Children’s Hospital Medical Centre). Fgfr1mTertloxP mice were offered by Drs. Michael Simons and Masahiro Murakami (Yale University). The authors are grateful to Ms. Bii Sung for assistance in lung mechanics measurement.

Received: May 10, 2011
Revised: August 15, 2011
Accepted: October 5, 2011
Published: October 27, 2011

REFERENCES

vascular niche in promoting tumour growth and tissue repair by angiocrine

reconstitution of hematopoiesis is dependent on VEGFR2-mediated regener-

Kopp, H.G., Shido, K., Petit, I., Yanger, K., et al. (2009). Engraftment and

Hooper, A.T., Butler, J.M., Nolan, D.J., Kranz, A., Iida, K., Kobayashi, M.,

of Notch-dependent hematopoietic stem cells. Cell Stem Cell

Ding, B.S., Nolan, D.J., Butler, J.M., James, D., Babazadeh, A.O., Rosenwaks,

DeLisser, H.M., Helmke, B.P., Cao, G., Egan, P.M., Taichman, D., Fehrenbach,

of early embryonic lung epithelial to endothelial crosstalk and branching

morphogenesis. Dev. Biol. 290, 177–188.

DeLisser, H.M., Helme, B.P., Cao, G., Egan, P.M., Taichman, D., Fehrenbach,

D., M., Zaman, A., Cui, Z., Mohan, G.S., Baldwin, H.S., et al. (2006). Loss of

Ding, B.S., Nolan, D.J., Butler, J.M., James, D., Babazadeh, A.O., Rosenwaks,

M., Z., Mittal, V., Kobayashi, H., Shido, K., Lyden, D., et al. (2010). Inductive angi-

on signals from sinusoidal endothelium are required for liver regeneration. Nature

468, 341–347.

Hooper, A.T., Butler, J.M., Nolan, D.J., Kranz, A., Iida, K., Kobayashi, M.,

Kopp, H.G., Shido, K., Petit, I., Yanger, K., et al. (2009). Engraftment and

reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274.

Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., and

Irie, K., Komori, K., Seiki, M., Tsuruga, E., Sakakura, Y., Kaku, T., and Yajima,

Kosikawa, N., Mizushima, H., Minegishi, T., Iwamoto, R., Mukeda, E., and

Lee, C.G., Link, H., Baluk, P., Homer, R.J., Chapoval, S., Bhandari, V., Kang,

Liu, Y., Sadikot, R.T., Adami, G.R., Kalinchinkov, V.V., Pendyala, S., Natarajan,

genesis promoted by endothelial cells prior to vascular function. Science 294, 559–563.

