Acute Kidney Injury: Biomarkers, Pathophysiologic Targets and Clinical Trial Designs

James A. Tumlin MD
Professor Medicine Nephrology
University of Tennessee College of Medicine
Director of Southeast Renal Research Institute
Definitions of AKI need to use existing biochemical Parameters that clinically meaningful endpoints And predict short and long-term outcomes

Utilizing “road-map” biomarkers to design trials with interventions based upon the current and predominant pathophysiology

Proper study drug dosing studies: “One dose Does Not a Treatment Make”

Use of Observational studies-Prior to intervention Trials-reducing variability between Sites
Investigational Drugs for AKI: Considerations in Trial Design

- Which drug, What Dose, When & How Long?

- Dose response effects
 “Do you know how much to give?”

- When to Initiate Administration of Agent: Prophylactic administration?

- Duration of Study Drug Administration
 Arbitrary duration of treatment

- How to Administer Study Drug
 Intra-renal drug administration
AKI Definitions: Do they predict clinical Outcomes?
AKI Definitions: Good & Bad

- Over 30 AKI definitions have been published
 - Effectively all are based on absolute or Delta changes in serum creatinine

- Recent evolutions of AKI Definition:
 - Include severity scoring and correlation with CKD and 90 day all cause mortality

- Absence of Biomarkers to identify prevailing pathophysiology
 - Guide to determining the What and Where Question
Three Dominant AKI Definitions:

- RIFLE
- AKIN
- KDIGO
RIFLE Criteria: AKI

Risk
- Increase Serum Cr-1.5X OR \(\downarrow \) GFR > 25%

Injury
- Increase Serum Cr-2X OR \(\downarrow \) GFR > 50%

Failure
- Increase Serum Cr-3X \(\downarrow \) GFR > 75%
 OR Cr > 4.0

Loss
- Persistent AKI requiring renal replacement therapy X > 4 Weeks
- Persistent AKI requiring renal replacement therapy X > 12 Weeks (ESRD)

ESRD
- High Specificity
- Low Specificity

Urinary Output
- Urine Output < 0.5 mls/kg body Wt. X 6 hours
- Urine Output < 0.5 mls/kg body Wt. X 12 hours
- Urine Output < 0.3 mls/kg X 12 hours OR Anuria

Persistent AKI requiring renal replacement therapy
- X > 4 Weeks
- X > 12 Weeks (ESRD)
AKIN Criteria: AKI

Stage -I
Increase Serum Cr-1.5X OR
0.3 mg/dl

Stage-II
Increase Serum Cr-2X

Stage-III
Increase Serum Cr-3X OR Cr ≥ 4.0

Urine Output < 0.5 mls/kg body Wt.
X 6 hours

Urine Output < 0.5 mls/kg body Wt.
X 12 hours

Urine Output < 0.3 mls/kg body Wt.
X 24 hours OR
Anuria X 12 hrs

Start of Renal Replacement Therapy

Low Specificity

High Specificity
<table>
<thead>
<tr>
<th>Stage</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage-I</td>
<td>Increase Serum Cr-1.5-1.9X Baseline OR ↑0.3 mg/dl</td>
</tr>
<tr>
<td></td>
<td>Urine Output < 0.5 mls/kg body Wt. X 6-12 hours</td>
</tr>
<tr>
<td>Stage-II</td>
<td>Increase Serum Cr-2.0-2.9 X Baseline</td>
</tr>
<tr>
<td></td>
<td>Urine Output < 0.5 mls/kg body Wt. X 12 hours</td>
</tr>
<tr>
<td>Stage-III</td>
<td>Increase Serum Cr-3X OR Cr ≥4.0</td>
</tr>
<tr>
<td></td>
<td>Urine Output < 0.3 X 24 hours</td>
</tr>
<tr>
<td></td>
<td>Start of Renal Replacement Therapy</td>
</tr>
</tbody>
</table>

KDIGO Criteria: AKI

Low Specificity

High Specificity
How effective are our current Definitions of AKI in Predicting Clinical Outcomes
Long-term Effects of Post-CABG AKI in Patients with Normal Perioperative Renal Function

OBJECTIVES: To determine the effect of pre-operative GFR and RIFLE criteria Risk, Injury, Failure or ESRD on long-term survival of Post CABG pts.

METHODS: Univariate & multivariate analysis of GFR on patient survival of 4029 CABG patients at 150 months

CKD Stage-1 (46.5%) (GFR ≥90 ml/min/1.73 m²),
CKD Stage-2 (50.4%) (GFR 60-89 ml/min/1.73 m²)
CKD Stage-3 (3.1%) (GFR 30–59 ml/min/1.73 m²)

Outcomes: Long-term patient survival

Progressive AKI Mortality: Utility of RIFLE RISK, Injury and Failure in Post CABG AKI
Validation of KDIGO Criteria for AKI and Comparison to AKIN and RIFLE Criteria

General Consensus: Staged KDIGO Definitions Of AKI Predict Short and Long-Term Clinical Outcomes
Can Known AKI Risk Factors Be used to Enrich AKI Studies?
Relative Risk for Post-CABG AKI
Contribution of Specific Co-Morbid Variables

Incidence of Post-Op Renal Replacement Therapy as Function of Peak Serum Creatinine

% Incidence of Dialysis

- 1.6: 2%
- 2.0: 13.6%
- 2.5: 33%
- 3.0: 40%
- 3.5: 58%
- 4.6: 38%

References:
NephroNet Experience: Enriching AKI Populations Using Pre-Interventional Observational Studies
Site Qualification and Estimation Study Populations

- Hospital Based AKI Studies: Few centers have access to accurate AKI event rates

- AKI event rates vary:
 - Type of AKI definition
 - Time frame for AKI inclusion
 - Between Individual surgeons
 - Between individual centers

- Inclusion Criteria for AKI
 - No. of and type of co-morbid risk factors
 Note: AKI is a summation of intensity of renal insult in combination with co-morbidities that increase susceptibility to AKI
Primary Objective:
Determine incidence of Post CABG Acute kidney Injury (AKI) as defined by the KDIGO criteria in cardiac surgery patients with multiple pre-defined risk factors

Secondary Objectives:
- Incidence-Stage of AKI defined by AKIN or RIFLE R criteria
- Changes in Renal function over observation period
- Percent patients requiring renal replacement therapy
- Percent patients with renal dysfunction on POD-28, 60, or 90
- Relationship between # and type of risk factors to outcome
- Duration of AKI

Tumlin et.al. presented CRRT-2014, San Diego CA, March 2014
Inclusion Criteria: Patients scheduled for On-Pump cardiothoracic surgery (off-pump excluded)

- All CT patients with 2 or more concurrent risk factors:
 - CKD stage 3 or stage 4 (eGFR<20mls/mi excluded)
 - Insulin requiring diabetes
 - Non-insulin requiring diabetes and +2 proteinuria
 - Chronic obstructive pulmonary disease (COPD)
 - Cardiomyopathy: LVEF < 40%
 - Pre-operative anemia-Hgb < 10.0 mg/dl
 - Iodinated contrast exposure within 7 days of surgery

Tumlin et.al. presented CRRT-2014, San Diego CA, March 2014
NephroNet

Demographics

- 100 patients enrolled
 - 73 men & 27 women
 - Average age (SD): 66 (10) years old
 - 86 Caucasian

- Average creatinine (SD) day of surgery: 1.2 (0.5) mg/dl

- Average eGFR (SD): 66 (26) ml/min/1.73m²

- Risk factors
 - CKD: 48%
 - Diabetes: 48%
 - COPD: 45%
 - LVEF <40%: 46%
 - Anemia: 48%
 - Contrast Agent: 11%

Tumlin et.al. presented CRRT-2014, San Diego CA, March 2014
Percent (%) Patients AKI Rate

Tumlin et al. presented CRRT-2014, San Diego CA, March 2014
Staging of AKI Severity

- **Stage-I**: 70%
- **Stage II**: 18%
- **Stage III**: 12%

KDIGO Stage 1
- SCr 1.5 to 1.9 times baseline, or
- SCr ≥ 0.3 mg/dl increase

KDIGO Stage 2
- SCr 2.0 to 2.9 times baseline

KDIGO Stage 3
- SCr 3 times baseline, or
- increase in SCr to ≥ 4.0 mg/dl
- or initiation of RRT

Tumlin et al. presented CRRT-2014, San Diego CA, March 2014
KDIGO AKI Stage Severity

- CKD
- Diabetes
- COPD
- LVEF <40%
- Pre-Op anemia
- Contrast media

Risk factors

- 2 risk factors: 7%
- 3 risk factors: 35%
- 4 or more risk factors: 58%

n = 58, 58%
More CKD patients developed AKI as compared to non CKD patients: 71% vs. 44% (P<0.01)
AKI Rate
+/- Presence CKD

NephroNet

Percent (%) Clinical Endpoint

- CKD

Transient Stage I AKI
25%

Sustained Stage I AKI-6%

Stage II-III AKI-13.5%

+ CKD

Transient Stage I AKI
18.8%

Sustained Stage I AKI-31.5%

Stage II-III AKI-21%
Serial Cr at 90 Days:
No CKD

- No AKI
- Transient AKI
- Sustained AKI
- Stage II-III AKI
- AKI 2,3: Severe

Note: 90 Day permanent injury does not occur in the absence of prior CKD.
Serial Cr at 90 Days: With CKD

NephroNet

Note: AKI at 48hrs with prior CKD contributes to 90 sustained renal injury

- No AKI
- AKI1: Transient
- AKI1: Sustained
- AKI 2,3: Severe
Outcome:
Canadian Pharmaceutical Company Changed Corporate Strategy: Conducting Prophylactic Post-CABG Study
Why is The Need for Validated Biomarkers in AKI So Important?

- Biomarkers provide the opportunity for early intervention with the prospect of disrupting the pathophysiologic cascade that culminates in progressive renal failure/dialysis.

- Appropriately selected biomarkers can inform the clinician WHERE in the cascade of AKI the patient is clinically.

- Biomarkers can assist in determining what combination to treatments are required prevent Further decline in AKI.
Furosemide Stress Test
“A Functional Biomarker”
Validation of an Old Idea
Development of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury

- **Study Objective:** To determine the predictive efficacy of the urine response to Bolus Furosemide in patients with non-oliguric and oliguric AKI.

- **Study Methods:** 77 subjects with primary endpoint of AKIN-III were examined for urine response to a 1.0 mg/kg bolus furosemide.
 - Hourly urine response
 - Progression to death or dialysis
 - Receiver operator curve analysis

- **Study Results:** Urine output cutoff < 200 mls/2 hours
 - ROC value-0.87
 - Progression to AKIN-III 32%

Development of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury

Development of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury

Koyner et. al. SAKINET Group: In Press
Positive Furosemide Stress Test:

- More likely to progress to AKIN Stage III
- More likely to require Dialysis or CRRT
- Higher likelihood of 90 Day Mortality
“Just Because You Are in Rome Does Not Mean You Are On the Right Road to the Vatican”
The Ideal Biomarker:
Should exhibit high sensitivity & specificity but also the ability to locate where a patient is in the pathologic continuum of AKI
“What Do We Do Now Captain?”
What Time is it?
Physiologic Targets of Drug Therapy in AKI

- Restoration of Corticomedullary blood flow
- Disruption of tubular apoptotic pathways
- Inhibition Neutrophilic-monocytic infiltration
- Stem Cell repopulation
- Prevention of CKD and ESRD progression
Pathologic Continuum of AKI: Early Tubular Injury-Reduction of Corticomedullary Blood Flow: 6-18 hours

- Normal Tubular Epithelia
- Ischemia
- Re-Perfusion
- Loss of Brush Border & Polarization
- Apoptosis
- Necrosis
- Apoptotic Blebs
- Vasa Recta & Luminal Neutrophil Invasion
- Release of MPO O$_2^*$ Radicals
- Formation "Muddy Brown Casts"
- Anuria Tubular Occlusion
- Loss of Cell Adhesion & Sloughing Epithelial Cells

Intervention:
- Renal directed vasodilator therapy
- Fenoldopam
- Anaritide
- PGI$_2$

Early Biomarkers:
- NGAL, KIM-1, IL-18
AKI: Impaired Vasodilation and Autoregulation

Initiation Phase: 6-18 hrs.

Maximized Vasoconstriction
Increased Vascular Reactivity

- ET-1
- ET-α receptor
- ET-β receptor
- Thromboxane A₂
- Angiotensin II
- Adenosine

Vascular Congestion
Occluded Vasorectas

Impaired Vasodilation

- i NOS
- e NOS

Blunted Vasodilator Response

- Acetylcholine
- Bradykinin
- Nitroprusside
Allgren Anaritide Trial
1st Major Attempt
Anaritide in Acute Tubular Necrosis

- **Study Objective:** To determine the efficacy of the Atrial Natriuretic peptide (Anaritide) on the 21 day rate of dialysis at in patients with established ATN.

- **Study Design:** Multicenter, randomized, double-blind, placebo-controlled trial of 504 patients with ATN.

- **Diagnosis of ATN:** 1.0 mg/dl rise Cr < 48 hrs
 Predefined oliguric group < 400 mls/24 hrs

- **Exclusion criteria:** (1) > 3.0 mg/dl or initiation dialysis

- **Study Treatment:** ANP titrated 200 ng/kg/min X 24 hrs
 Dose held at maximum BP tolerated

- **Primary Endpoint:** 21 day dialysis-free survival

Anaritide in Acute Tubular Necrosis

WWW: What Went Wrong?

- **Study Dose:**
 - Anaritide infused at 200 ng/ml
 - 46% of Anaritide developed hypotension

- **Study Drug Infusion:**
 - Anaritide infusion started 48 hrs
 - Baseline Cr: 40% Anaritide > 4.0 mg/dl
 - 50% Placebo > 4.0 mg/dl

- **Dialysis Endpoint:**
 - "Floating Endpoint"-left to the discretion or primary attending

- **Differential Etiology AKI:**
 - Nephrotoxic: 59% Anaritide vs. 66% Placebo
 - Ischemic: 28% Anaritide vs. 41% Placebo

Lewis Anaritide Trial
Round-1
Atrial Natriuretic Factor in Oliguric Renal Failure

- Multicenter, randomized, double-blind, placebo controlled trial of 222 patients with ATN.

- Diagnosis ATN: (1) FeNa+ > 1.0%
 (2) 0.5 mg/dl rise Cr over 48 hrs
 (3) < 400 mls / 24 hrs

- Exclusion criteria: (1) >3.0 mg/dl or initiation dialysis
 (2) renal transplant
 (3) previous dialysis

- Randomized: (1) ANP titrated by 50 ng/kg/min to maximum dose 200 ng/kg/min X 24 hrs

 Primary Endpoint: 21 day dialysis-free survival

- Secondary endpoints: All cause mortality

- Note: 42% Developed symptomatic Hypotension

Lewis et.al Am J. Kid Dis. 36(4), 767-774, 2000
Atrial Natriuretic Factor in Oliguric Renal Failure: 14 and 21 Day Dialysis Rates

Lewis et.al Am J. Kid Dis. 36(4), 767-774, 2000
WWW: What Went Wrong?

- **Study Dose**: Anaritide infusion 200 ng/ml
 - No change from Allgren
 - 95% of Anaritide SBP <90 mmHg
 - Mean delta SBP-37 mm Hg
 - Failure to use “Organ Directed Therapy”

- **Duration Drug Infusion**: Max duration: 24 hours

- **Dialysis Endpoint**:
 - “Floating Endpoint”-left to the discretion primary attending- No change from Allgren

- **Etiology AKI**:
 - Non-Ischemic: 41% Anaritide vs. 51% Placebo
 - Ischemic: 58% Anaritide vs. 49% Placebo

Lewis et.al Am J. Kid Dis. 36(4), 767-774, 2000
Sward Anaritide Trial
Round-3
Atrial Natriuretic Factor in Acute Renal Failure: A Second Look

- **Study Objective:** Determine the effect of reduced rate Anaritide infusions on the incidence of 21 day dialysis in patients with post-operative ATN.

- **Study Methods:** Randomized, double-blind, placebo controlled in 61 patients Post Bypass ATN.

- **Entry Criteria:**
 - Post cardiac bypass patients
 - Admission serum Cr < 1.7 mg/dl
 - Rise > 50% above admission Cr

- **Randomization:**
 - Control group: Normal saline
 - Treatment group: Anaritide 50 ng/kg/min

Sward et al. Crit. Care Medicine 32(6) 1310-1315 2004
Atrial Natriuretic Factor in Acute Renal Failure: A Second Look

Dialysis-free survival

Dialysis-21%

Dialysis-47%

p=0.017

Time (days)

ANP
Placebo

Sward et al. Crit. Care Medicine 32(6) 1310-1315 2004
Anaritide in AKI: Mystery of Goldilocks Porridge

Lewis Anaritide Bear

Sward Anaritide Bear

Allgren Anaritide Bear

Still Too HOT

Just Right!

Way to HOT
WWW: What Went Right?

- Study Dose: Anaritide infusion 50 ng/ml
 - 75% Reduction from Allgren-Lewis
 - 95% of Anaritide SBP <90 mmHg
 - Mean delta SBP-37 mm Hg

- Study Drug Infusion: Maximum duration
 - Anaritide: 5.3 days
 - Placebo: 4.3 days
 - Maximum: Allgren-Lewis 24 hours

- Uniform Etiology AKI:
 - Nephrotoxic AKI: excluded
 - Only Post CT surgery ischemia AKI

Intra-Renal Drug Delivery: “More Bang For Your Buck”
Intra-Renal Drug Delivery: Teaching an Old Drug a New Trick

Utilizing Targeted Organ Delivery for Pharmacologic Treatment of AKI
Superior Enhancement of Renal Blood Flow with Intra-Renal FNP Delivery

Intra-Renal Vasodilator Administration: Comparative Effects of Different Agents

Dopamine

Fenoldopam

Percent (%) Change Avg. Peak Velocity-Resistance

Renal Vasc Resistance

Ug/kg

Dose

0.1 0.3 0.8

5 15 30

5 15 30

Moral of the Story?

“One Dose Does NOT A Therapy Make!”
Physiologic Targets of Drug Therapy in AKI

- Restoration of Corticomedullary blood flow
- Disruption of tubular apoptotic pathways
- Inhibition Neutrophilic-monocytic infiltration
- Stem Cell repopulation
- Prevention of CKD and ESRD progression
Pathologic Continuum of AKI: Tubular Apoptosis Versus Necrosis: Time Unknown

- Normal Tubular Epithelia
- Loss of Brush Border & Polarization
- Apoptosis
- Necrosis
- Bleb Formation
- Early Biomarkers: Apoptotic Blebs, Caspase
- Thrasos 184
- Vasa Recta & Luminal Neutrophil Invasion
- Release of MPO O_2^* Radicals
- Formation "Muddy Brown Casts"
- Anuria
- Tubular Occlusion
- Loss of Cell Adhesion & Sloughing Epithelial Cells
- Cellular Regeneration
Physiologic Targets of Drug Therapy in AKI

- Restoration of Corticomedullary blood flow
- Disruption of tubular apoptotic pathways
- Inhibition Neutrophilic-monocytic infiltration
- Stem Cell repopulation
- Prevention of CKD and ESRD progression
Pathologic Continuum of AKI: Neutrophilic Infiltration into Corticomedullary Junction

Time 24-36 hrs

Normal Tubular Epithelia → Loss of Brush Border & Polarization → Apoptosis

Ischemia → Re-Perfusion → Necrosis

Apoptotic Blebs → Bleb Formation

Anti-ICAM-1
Adenosine 2a Receptor agonist M

Early Biomarkers:
Myeloperoxidase
Elastase

Vasa Recta & Luminal Neutrophil Invasion → Formation “Muddy Brown Casts”

Release of MPO O₂⁻ Radicals → Anuria

Cellular Regeneration

Loss of Cell Adhesion & Sloughing Epithelial Cells

Time 24-36 hrs: Pathologic Continuum of AKI: Neutrophilic Infiltration into Corticomedullary Junction
Post-ischemic neutrophilic infiltration into corticomedullary junction: 24-36 hrs

Neutrophil Recruitment
- ↑ TNF-α 60 minutes
- ↑ IL-1 60 minutes
- ↑ MCP-1
- ↑ ICAM-1
- ↑ E-Selectin

Vasculature Occlusion
- ↑ iNOS leukocyte recruitment
- ↑ Outer medullary leukocyte infiltration
- ↑ Expression ICAM/VCAM
- ↑ Occlusion of vasarecta
Acute Tubular Necrosis: Inflammatory Phase and Neutrophilic Infiltration at Corticomedullary Junction

- β integrins
- I-CAM-1
- E selectins
Alpha-MSH Blocks Interstitial Neutrophilic Infiltration of the Kidney Following Reperfusion Injury

- **Study Objective:** To determine delayed infusion of the melanocortin peptide α-MSH is able to block ischemia-reperfusion induce AKI

- **Study Methods:** BALB-C mice & Sprague Dawley rats Bilateral renal pedicles cross clamping X 40”

- Animal sacrificed at 4, 24 and 72 hours

- **Renal Function:** Serum Cr 1-6 hrs. post ischemia

- **Neutrophil infiltration:** Naphthol-Chloroacetate esterase staining
 Number Neutrophils: Glomeruli, cortex, outer-inner stripe medulla

Alpha-Melanocyte Stimulating Hormone Protects Against Ischemic ATN

Alpha MSH Minimizes Ischemic Changes In Outer Medulla

α MSH Block Neutrophil Infiltration in Interstitium & Glomeruli Following Ischemia Reperfusion Injury

α MSH reduces interstitial PMN infiltration at 4 & 24hrs post AKI

α MSH reduces glomerular PMN infiltration at 4 & 24hrs post AKI

![Graphs showing neutrophil infiltration in interstitial and glomerular tissues after AKI with MSH treatment.](image)

Alpha-Melanocyte Stimulating Hormone Reduces PMN Migration in Ischemic ATN

Blockade of Neutrophil Extravasation Attenuates Tubular Apoptosis Following I/R Injury

Mizuno et.al. Am. J. Pathol. Vol. 166, No. 6, June 2005
α-MSH Analogue (AP214)
Alpha-Melanocyte-Stimulating Hormone (\(\alpha\)-MSH) analogue (AP214) Blocks Sepsis-Induced AKI

Dose-Dependent Effect

Equivalent Efficacy \(\alpha\)-MSH

Doi et.al. Kid Internal. Vol-73, 1266-1274 (June (1) 2008)
Alpha-Melanocyte-Stimulating Hormone (α-MSH) analogue (AP214) Blocks Sepsis-Induced AKI

AP214 administered 6 hours after CLP

Doi et.al. Kid Internal. Vol-73, 1266-1274 (June (1) 2008)
Summary and Conclusions

- Current definitions of AKI accurately reflect clinical outcomes in aggregate but not individually.

- Use of observational studies with pre-defined Inclusion criteria CAN enrich AKI populations.

- “Functional” Biomarkers such as FST are simple inexpensive tests that incorporate physiologic renal responsiveness.

- Serial Biomarkers that identify specific “points” in the pathologic sequence of AKI will be needed for proper management of patients.

- Target organ delivery may yet be method to maximize treatment while minimizing toxicity.