Inducing and Measuring Brain Plasticity Associated with Aphasia Treatment

Julius Fridriksson, Ph.D.
Department of Communication Sciences & Disorders
Arnold School of Public Health
University of South Carolina
Background

• Aphasia – language impairment typically caused by stroke in the left hemisphere

• Typical aphasia treatment
 – Behavioral treatment
 – Administered by a Speech-language pathologist
 • One-on-one setting
 – Targets:
 • Language and/or functional communication

• RESEARCH FOCUS: Brain plasticity associated with aphasia treatment
Purpose:
- To examine functional brain changes associated with aphasia treatment outcome
- To examine structural brain damage as a predictor of treatment outcome

Treatment target:
- Anomia – Impaired ability to name common objects
 - Common in left hemisphere stroke
 - Varies greatly among patients
 - Commonly targeted in speech-language therapy of aphasia

(Fridriksson, 2010; J of Neuroscience)
Participants & Aphasia Treatment

- N = 26 – left hemisphere, chronic stroke
- Single event stroke
- Time post-stroke: At least 8 months

• Behavioral aphasia treatment
 - Administered by a speech pathologist
• 3 consecutive hours/day
• 5 sessions per week for two weeks
• Total time in treatment: 30 hours

(Fridriksson, 2010; J of Neuroscience)
• 4 fMRI sessions
 – 2 before treatment started
 – 2 when treatment was completed
• Treatment outcome: Naming common objects (pictures) during fMRI scanning
• Naming attempts recorded with non-ferrous microphone – scored off-line by a SLP

(Fridriksson, 2010; J of Neuroscience)
Results: Aphasia treatment success – Change in correct naming

(Fridriksson, 2010; J of Neuroscience)
Results: Aphasia treatment success – Functional brain changes

(Fridriksson, 2010; J of Neuroscience)
Studies 2 and 3: Transcranial direct current stimulation (tDCS) to treat aphasia

• Study 2: Does brain stimulation improve aphasia treatment outcome?
• Study 3: Follow-up study with “tighter” experimental control

tDCS: Induces a weak electrical current (1-2 mA) between two electrodes (anode – positive charge; cathode – negative charge) placed on the scalp
ABSTRACT

Objective: Motor recovery after stroke depends on the integrity of ipsilesional motor circuits and interactions between the ipsilesional and contralesional hemispheres. In this sham-controlled randomized trial, we investigated whether noninvasive modulation of regional excitability of bilateral motor cortices in combination with physical and occupational therapy improves motor outcome after stroke.
Study 2: tDCS accompanied by aphasia treatment

- 10 participants
 - Chronic aphasia
 - Various aphasia types/severities

- Treatment
 - Visual-speech perception to treat anomia (Fridriksson et al., 2009, *Stroke*)
 - Computerized treatment based on speech perception (picture – word matching)
 - 2 weeks of treatment
 - 5 sessions/week
 - Session length = 20 min

(Baker, Rorden, & Fridriksson, 2010; *Stroke*)
tDCS

- Design – double blinded
 - 1 week of anodal stimulation (A-tDCS)
 - 1 week of placebo (sham tDCS; S-tDCS)

- Electrode placement
 - Anode - Left frontal lobe
 - Cathode – Right shoulder
 - Targeted with fMRI

- Outcome measure
 - Naming
 - Trained items
 - Generalization

(Baker, Rorden, & Fridriksson, 2010; Stroke)
More treated items were named correctly following A-tDCS compared to S-tDCS ($p = 0.04$) (Baker, Rorden, & Fridriksson, 2010; Stroke)
More untreated items were named correctly following A-tDCS compared to S-tDCS ($p = 0.07$)

(Baker, Rorden, & Fridriksson, 2010; *Stroke*)
Study 3: tDCS to treat naming in fluent aphasia

- 8 Participants
 - Mild-moderate aphasia severity
 - Posterior damage
- Aphasia treatment & tDCS
 - Picture-word matching task
 - tDCS:
 - 5 sessions A-tDCS
 - 5 sessions S-tDCS
 - Electrode placement fMRI guided
- Treatment type blinded
 - Participants
 - Clinicians administering treatment
 - Clinicians scoring outcome tests

(Fridriksson et al., in press; Stroke)
Results – Change in RT during naming

• Immediately post treatment
 – A-tDCS > S-tDCS ($p=0.025$)

• 3 Weeks post treatment
 – A-tDCS > S-tDCS ($p=0.004$)

(Fridriksson et al., in press; Stroke)
• Collaborators
 – Post-docs
 • Jessica Richardson, Paul Fillmore, Dana Moser, Julie Baker
 – Graduate Students
 • David Eoute, Leigh Morrow, Tracy Toothman, Katie Kramp, Sarah Grace Hudspeth, Barry Floyd
 – Other collaborators
 • Chris Rorden – GA Tech
 • Leonardo Bonilha – Medical University of South Carolina
 • Marom Bikson – City College of New York

• Research support
 – NIDCD
 • DC008355
 • DC009571
Thank You