Bluetooth™ Enabled Accelerometer Tracking (BEAT) Technology for Leg Ulcer Patients

Aleksey Shaporev¹, Vladimir Reukov¹, Chengyi Tu¹, Mathew Gregoski², Frank Treiber², David Kwartowitz¹, Teresa Kelechi², Alexey Vertegel¹

¹Bioengineering Department, Clemson University, Clemson, SC;
²College of Nursing, Medical University of South Carolina, Charleston, SC

Our group is working on development of new mobile health devices/services in collaboration with physicians and nurses to improve patients’ quality of life
The problem:

- Overweight patients with diabetes often face a problem of “diabetic limb” caused by insufficient blood supply and chronic foot blood deoxygenation;
- This can lead to poor healing of even minor wounds and may eventually require amputation of toes or the entire foot due to development of gangrene;
- Physical activity (PA) is critical to improve the condition of their legs and promote wound healing;
- Unfortunately, these patients are unable to engage in guideline based PA programs;
- PA programs at home is the most economic way of these patients treatment, but those programs are often inefficient due to lack of compliance and patient’s motivation.

- So, patients remote monitoring is necessary to motivate them to have PA.
Requirements to PA remote monitoring system:

• **Small size** – sensor must small enough to be nested at foot or shoes;

• **Sensitivity** – sensor must be able to record small accelerations corresponding to exercise motions;

• **Power efficiency** – battery lifetime must be reasonably high;

• **Interactivity** – device must be able to analyze patient’s PA, perform statistical analysis, encourage him to perform exercises and warn patient (and his physician) if PA is insufficient;

• **Telecommunication capabilities** – device must be able to transmit data to physician, and retranslate doctor’s recommendations to the patient.

http://www.awaretechs.com/WirelessAccelerometer.html

What is BEAT? An accelerometer-based system for remote smart monitoring of overweight patients' physical activity

BEAT consists of 3 main parts:

Hardware+ Firmware: power-efficient components assembled into a sensor which measures patients' PA and communicates via Bluetooth with patient’s smartphone.

Software (smartphone’s program) receives data from the sensor, performs data analysis, performs patient feedback and sends processed data to the web-server.

Netware (internet-server and corresponding web-sites) collects data sent by phones and provides doctor an access to PA data and data analysis capabilities.

BEAT features:

- sensor is small enough so it can be affixed to patient’s foot or slipper;
- can monitor and record patient’s exercise for a prolonged period of time;
- smartphone analyzes PA and automatically transmits the recorded data to the health care providers office.
Sensor consists of **radiomodulus** (Bluetooth), **microprocessor**, **accelerometer** and a **battery** assembled on a single board that can be as small as quarter.
We developed BEAT application for Android OS with following functions:

- **Wireless connection to the sensor**;
- **Data analysis**: determines whether patient makes an exercise or no, distinguishes between exercises and calculates exercise duration and significant parameters (magnitude, frequency etc.);
- **Conversation to user/patient** (stimulate him to do required actions, inform him on analysis results and his progress – e.g. to motivate him);
- **Data transmission to server** (where doctor has and access to them and to statistics).
Server:

- Stores data;
- Provides access to the data to authorized users (physicians etc.);
- Performs statistical analysis of received data (and provides access to the statistics to authorized users);
- Performs feedback (to patient and/or physician).
Validity/Reliability:

Why so important? Because exercises include limited motions with relatively small accelerations, so accelerometer sensor must be both sensitive and reliable.

- Device reliability was checked in an experiment with 4 devices, coefficient of variation was found to be <1% - so assembled developed devices are reliable.

![Fig. 1. Schematic of exercises recommended to patients](image1)

![Fig. 2. Two device comparison data – reliability study.](image2)
Validity/Reliability:

- A software was designed to distinguish between different exercises that patients are supposed to do. Special decision-tree type data analysis algorithm (including PCA and FFT) was developed;
- Tests showed that application works well (fig. 1). As well it was found that software is able to recognize exercises done by different patients (fig. 2).

Fig. 1. Various exercises done by a volunteer distinguished by software.

Fig. 2. Level 2 Exercise 1 acceleration data for two volunteers.
BEAT system was developed, including:

- **BEAT sensor** was created;
- **Smartphone software paired with internet-based solution** was developed to provide remote monitoring of patient’s physical activity;
- Both sensor and software were tested for reliability and found to be reliable.