Interdisciplinary obesity research and the promise of translation: Possible but improbable?

Corby K. Martin, Ph.D.

Pennington Biomedical Research Center
Acknowledgements

Ingestive Behavior Laboratory
Diana Thomas (Montclair State University)
Tom Baranowski (Baylor College of Medicine)
Theresa Nicklas (Baylor College of Medicine)
Bahadir Gunturk (Louisiana State University)
Leanne Redman
Tim Church
Steve Heymsfield
Catherine Champagne
Eric Ravussin
Ray Allen
Don Williamson

Grant Support
U01 DK094418 (Co-PI)
R01 DK089051
R01 HL102166 (Co-PI)
R15 DK090739 (PI: D. Thomas)
U01 AG022132 (PI: E. Ravussin)
R03 DK083533
R21 AG032231

The Ingestive Behavior Laboratory
Acknowledgements

Ingestive Behavior Laboratory

Diana Thomas
Tom Baranowski
Theresa Nicklas
Bahadir Gunturk
Leanne Redman
Tim Church
Steve Heymsfield
Catherine Champagne
Eric Ravussin
Ray Allen
Don Williamson

Grant Support
U01 DK094418 (Co-PI)
R01 DK089051
R01 HL102166 (Co-PI)
R15 DK090739 (PI: D. Thomas)
U01 AG022132 (PI: E. Ravussin)
R03 DK083533
R21 AG032231
Acknowledgements

Ingestive Behavior Laboratory
Diana Thomas (Montclair State University)
Tom Baranowski (Baylor College of Medicine)
Theresa Nicklas (Baylor College of Medicine)
Bahadir Gunturk (Louisiana State University)
Leanne Redman
Tim Church
Steve Heymsfield
Catherine Champagne
Eric Ravussin
Ray Allen
Don Williamson

Grant Support
U01 DK094418 (Co-PI)
R01 DK089051
R01 HL102166 (Co-PI)
R15 DK090739 (PI: D. Thomas)
U01 AG022132 (PI: E. Ravussin)
R03 DK083533
R21 AG032231
Overview

- Thoughts on interdisciplinary research
- An example of interdisciplinary research
 - Review of lessons learned
- Summary
Thoughts on interdisciplinary and translational research

- Many of us work on campuses that are physically and bureaucratically separate from other resources and collaborators
Costa Concordia
• Costa Concordia

[Image of Costa Concordia ship]
The team leader must help the team:
- Keep their eye on the big prize (what is the objective of the collaboration?)
The team leader must help the team:

- Keep their eye on the big prize (what is the objective of the collaboration?)
The team leader must help the team:

- Keep their eye on the big prize (what is the objective of the collaboration?)
• What is the objective of the collaboration?
 • Presentation? Publication? Grant (Foundation, NIH, etc.)? Commercial product? Formation of a company?

• Be prepared for a long arduous process
 • When will the team realize a work product? A return on the investment of time?

• What year was the first cell phone demo?
• The first cell phone demo was in 1973 and they were commercially available in 1983

• Good grants take months to write; try not to be reactive
 • Are “one-time” opportunities worth the investment?

• Response cost

• How does the research project fit into a larger line of research?
 • Is the whole greater than the sum of its parts?
The team leader must also keep the team focused on applicability and/or a deliverable to society and the funding agency.

- Just because you can do something, does not mean that you should
• The team leader must also keep the team focused on applicability and/or a deliverable to society and the funding agency
 • Just because you can do something, does not mean that you should!
The team leader must also keep the team focused on **applicability** and/or a **deliverable** to society and the funding agency.

- Just because you can do something, does not mean that you should!

Venetian-blind sunglasses

Phone Fingers
An example of interdisciplinary obesity research
It is possible that what is most important is the research that will not be reviewed because it was not pursued.
Food Intake Assessment

Dietary assessment meets *behavioral* assessment
Self-report (SR) has a number of limitations:

- Poor accuracy; SR underestimates EI by $\geq 37\%$ (Schoeller et al., 1990)

- $\sim 50\%$ of SR method’s error is due to patients inability to accurately estimate portion size (Beasley et al., 2005), and improving accuracy is difficult (Martin et al., 2007)

Why have participants’ estimate portion size?
In summary:

- Circa 2006, no methods existed to remotely and accurately measure food intake in free-living conditions, let alone in near real-time.
- Accurate methods did exist to measure food intake in cafeteria settings, military dining facilities, etc.
• Digital Photography of Foods Method
 • Raters estimate portion size via visual comparison
 • The Food Photo. App.© calculates intake based on the USDA database
 • +5.2 g vs. weighed intake

Williamson et al., 2003; 2004
The cafeteria-based Digital Photography of Foods Method has demonstrated its utility

- **Martin et al. 2007**
 - Effect of second servings on food intake
- **Martin et al. 2010**
 - Adherence to the USDA and IOM recommendations for school lunches
- **Williamson et al. 2012**
 - LA Health; change in food intake during a wt. gain prevention program
 - ~50,000 food images from over 2,000 children in over 30 rural schools
- **Williamson et al., 2007**
 - WiseMind
- **Williamson et al., 2002**
 - Food intake during Basic Combat Training
The Remote Food Photography Method (RFPM)

- Smartphones are used to capture images of foods in free-living conditions
 - Images are labeled with a food description
 - A back up method is used if no food images are captured
- These images are sent to our server in near real-time via cellular networks for analysis

Martin et al., BJN, 2009
Martin et al., Obesity, 2012
The images are analyzed using validated visual comparison methods (Martin et al., 2009; Williamson et al., 2003; 2004).

An Archive of standard portion images was created for visual comparison.

The Food Photo App.© calculates intake from FNDDS 4.1 (USDA, 2010).

Computer imaging algorithms are available to:

- Correct for perspective and color
- Identify many foods and attempt to estimate portion size

(Martin et al., 2009; Dibiano, et al., in press; Gunturk et al., in press; 2010; Zhang et al., 2008a; 2008b; 2009)
Prompts are sent at meal times reminding subjects to capture images (Ecological Momentary Assessment or EMA; Stone and Shiffman, 1994)

- Subjects respond to the prompts and the Food Photo. App.© stores these responses and food images

- A report is sent to study personnel
The RFPM is accurate when good EMA methods are utilized.

Martin et al., 2012

Accuracy of the RFPM compared to doubly labeled water over 7-days in free-living conditions using Enhanced vs. Standard EMA methods.

* Asterisks indicate if error differed sig. (***p<.001) from zero within EMA group. Brackets denote differences between groups.
• Results from the definitive validity (N=50) study are positive
 • EI from the RFPM was compared to EI from DLW
 • Nutrient intake was evaluated during 2 test meals

Martin et al., 2012
• Bias is consistent over levels of energy intake, nutrient intake, body weight, and age

• Use of the RFPM does not affect energy intake (no reactivity or undereating was detected)

• User-satisfaction with the RFPM is exceptional
 • 94% of participants preferred the RFPM compared to pen-and-paper food diaries
Can we rely solely on technology with the RFPM?
Back-up methods are important

- A back-up method (most often a food record) was used on 8.9% of days and constituted 9.7% of total energy intake estimates

- Just like other methods, the RFPM is a useful but imperfect tool

Martin et al., 2012
The SmartIntake “App”

- Developed to reduce subject burden while maintaining the accuracy of the RFPM
 - Incorporated bar code scanning and entry of PLU numbers
- User-friendly text messaging and voice recording to ID foods
Take a picture of your meal (including beverage) before you start eating. Place the SmartIntake reference card vertically (up/down) in the photo. Hold the camera at a 45° angle and at an arm’s length from your plate. Make sure the entire meal is captured in the photo with minimal extra space.
Before Intake:

Add Barcode Scan

Add PLU-Code

Text Message: None

Voice Recording: None

Continue
To: UEMlab@pbrc.edu

Cc/Bcc:

Subject: Before meal for Test Patient

Attached is the before-image of the meal consumed. Here is additional data –

[Image of a bottle of water on a table]
Attached is the after-image of the meal consumed.
Computer imaging algorithms for food identification and food intake estimation

Bahadir Gunturk, Ph.D., L.S.U. Electrical and Computer Engineering

The fiduciary maker, as well as round plates, facilitates computer imaging

(Martin et al., 2009; Dibiano, et al., in press; Gunturk et al., in press; 2010; Zhang et al., 2008a; 2008b; 2009)
• Data flow
 • Semi-automated procedures were planned from the beginning

Manual correction when necessary

![Figure 1: High level block diagram](image-url)
Procedures are similar to “manual” estimation (train and match -to -sample)
Neural networks and “voting procedures” are used for food identification.

Figure 7: Classification Results

<table>
<thead>
<tr>
<th>Food Type</th>
<th>% positive votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastrami:</td>
<td>94.74%</td>
</tr>
<tr>
<td>Beef Ribs:</td>
<td>92.76%</td>
</tr>
<tr>
<td>Steak - London Broil(cubed):</td>
<td>88.82%</td>
</tr>
<tr>
<td>Shish Kebob:</td>
<td>87.50%</td>
</tr>
<tr>
<td>Chicken with Stuffing:</td>
<td>70.39%</td>
</tr>
<tr>
<td>Grapefruit Slices:</td>
<td>66.45%</td>
</tr>
<tr>
<td>Salad:</td>
<td>63.16%</td>
</tr>
<tr>
<td>Pancake:</td>
<td>57.24%</td>
</tr>
<tr>
<td>Candy - Skittles:</td>
<td>48.68%</td>
</tr>
<tr>
<td>Doughnut(glazed):</td>
<td>41.45%</td>
</tr>
<tr>
<td>Doughnut(unglazed):</td>
<td>36.18%</td>
</tr>
<tr>
<td>Cake - Boston Cream:</td>
<td>35.53%</td>
</tr>
<tr>
<td>Candy - M and Ms - Peanut(package):</td>
<td>26.97%</td>
</tr>
<tr>
<td>Grapefruit:</td>
<td>26.97%</td>
</tr>
<tr>
<td>Salad - Burger King Grilled Chicken:</td>
<td>24.34%</td>
</tr>
<tr>
<td>Soup - Beef Vegetable:</td>
<td>17.11%</td>
</tr>
<tr>
<td>Hamburger Helper, Beef and Noodles:</td>
<td>15.79%</td>
</tr>
<tr>
<td>Beef Noodle Casserole:</td>
<td>14.47%</td>
</tr>
<tr>
<td>Egg Roll:</td>
<td>13.82%</td>
</tr>
<tr>
<td>Chocolate Cake:</td>
<td>12.50%</td>
</tr>
</tbody>
</table>

...
Relation between surface area and gram weights of foods (assumed to be linear)

Potato salad

Gatorade (opaque glass)
- Classification results are good
- Portion size estimation is not as good (table to the left)
- Works well in cafeteria settings; free-living data are being evaluated
- Hybrid/semi-automated procedures appear most practical and beneficial

Dibiano, et al., in press

Table 2: Volume Estimation Results

<table>
<thead>
<tr>
<th>Food Type</th>
<th># Samples</th>
<th>Mean Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baked Beans</td>
<td>12</td>
<td>9.19%</td>
</tr>
<tr>
<td>Baked Drumstick</td>
<td>3</td>
<td>5.51%</td>
</tr>
<tr>
<td>Broccoli with Cheese</td>
<td>10</td>
<td>18.59%</td>
</tr>
<tr>
<td>Chicken Breast Pieces</td>
<td>10</td>
<td>20.37%</td>
</tr>
<tr>
<td>Chili Mac</td>
<td>12</td>
<td>15.71%</td>
</tr>
<tr>
<td>Corn on the Cob</td>
<td>2</td>
<td>0.84%</td>
</tr>
<tr>
<td>Enchilada Casserole - messy</td>
<td>10</td>
<td>15.42%</td>
</tr>
<tr>
<td>Enchilada Casserole - whole</td>
<td>3</td>
<td>7.45%</td>
</tr>
<tr>
<td>Garlic Toast</td>
<td>3</td>
<td>15.11%</td>
</tr>
<tr>
<td>Lasagna</td>
<td>12</td>
<td>22.37%</td>
</tr>
<tr>
<td>Macaroni and Cheese</td>
<td>10</td>
<td>11.47%</td>
</tr>
<tr>
<td>Pinto Beans</td>
<td>10</td>
<td>8.09%</td>
</tr>
<tr>
<td>Potato Salad with Mayo</td>
<td>11</td>
<td>16.55%</td>
</tr>
<tr>
<td>Rice</td>
<td>10</td>
<td>7.11%</td>
</tr>
<tr>
<td>Spanish Rice</td>
<td>10</td>
<td>13.72%</td>
</tr>
<tr>
<td>Spinach</td>
<td>10</td>
<td>22.02%</td>
</tr>
<tr>
<td>Sweet Peas</td>
<td>9</td>
<td>25.23%</td>
</tr>
<tr>
<td>Carrots</td>
<td>7</td>
<td>10.58%</td>
</tr>
<tr>
<td>Hot dog</td>
<td>8</td>
<td>8.21%</td>
</tr>
<tr>
<td>Pineapple chunks</td>
<td>8</td>
<td>16.79%</td>
</tr>
<tr>
<td>Potato Salad</td>
<td>8</td>
<td>10.35%</td>
</tr>
<tr>
<td>Sugar Snap Peas</td>
<td>8</td>
<td>13.78%</td>
</tr>
</tbody>
</table>
How do we quantify energy intake and dietary adherence over the long-term (years)?
Quantifying energy intake and dietary adherence from observed body weight

Long term

\[
\frac{dFFM}{dt} + 9500 \frac{dFM}{dt} = \frac{(1 - g)(EI_0 + \Delta EI)}{EI} - \frac{(15FFM + 1903)}{EE}
\]

\[FFM = 1.8 FFM(0) - 1.8TBW(0) - 1.8TBP(0) + 0.8FM + 23.5\]

\[TBW = 0.5W + 3.9\]

\[TBP = \begin{cases}
-0.05W + 9.3 & \text{if } W \leq 52\text{kg} \\
0.1W + 1.3 & \text{if } 52 < W \leq 57.7\text{ kg} \\
0.08W + 3.1 & \text{if } W > 57.7\text{ kg}
\end{cases}\]
Dynamic models overcome three fundamental problems in weight management treatment and allow you to:

1. Objectively quantify dietary adherence based on observed body weight

2. Objectively quantify energy intake over time

Thomas et al., 2009, 2010a, 2010b, 2011; 2012; Pieper et al., 2011
3. Overcome limitations of the 3,500 kcal/pound rule

Thomas et al., manuscript under review
Based on age, height, wt. and sex, the equations graph predicted weight over time assuming adherence to a calorie restricted (or overfed) diet.

Dietary intake can be calculated from observed body wt.

http://www.pbrc.edu/the-research/tools/weight-loss-predictor/

Thomas et al., 2009; 2010a; 2010b; 2011; 2012
- Graph observed weight against expected weight to quantify adherence

http://www.pbrc.edu/the-research/tools/weight-loss-predictor/
We utilized this approach for a Smartphone-based remote intervention.
SmartLoss: A Smartphone-based remote Weight Loss Intervention

- SmartLoss:
 - uses wireless technology for *data collection and treatment delivery*
The Smart Loss Intervention

Data are transferred from home environment

Automated Feedback

Clinician recommendations

Data are graphed to illustrate adherence

RFPM/SmartIntake App

Body Trace Scale

Fit Bit (Zip)
The Smart Loss Intervention

Data are transferred from home environment

Automated Feedback

Clinician recommendations

Data are graphed to illustrate adherence

Figure 4. Weight loss nomogram

- Increased clinician contact: structured meal plan
- Upper Limit
- Expected Wt. Actual Weight
- Lower Limit

1 3 5 7 9 11 13 15 17 19 21 23

Body Weight (kg)
The Smart Loss Intervention

Data are transferred from home environment

Automated Feedback

Clinician recommendations

Data are graphed to illustrate adherence

Figure 4. Weight loss nomogram

Figure 5. Step Graph

Increased clinician contact: structured meal plan

Upper Limit

Expected Wt. Actual Weight

Lower Limit

Good job, you met your goal over the last 3 days!
- SmartLoss **Version 1.0** Results (n=20 per group)
 - Over 3 months, SmartLoss patients lost more weight ($p < .001$) than control

![Figure 3. Weight loss between groups](image-url)
This intervention is being professionally programmed into an app

The “Smart” approach is the foundation of other novel interventions
Expecting Success: Personalized management of body weight during pregnancy

- PI’s: Leanne Redman, Ph.D. and Corby Martin, Ph.D.
IOM GWG Recommendations

<table>
<thead>
<tr>
<th>Prepregnancy BMI</th>
<th>BMI+ (kg/m²)</th>
<th>Total Weight Gain (lbs)</th>
<th>Rates of Weight Gain* 2nd and 3rd Trimester (lbs/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td><18.5</td>
<td>28–40</td>
<td>1 (1–1.3)</td>
</tr>
<tr>
<td>Normal weight</td>
<td>18.5-24.9</td>
<td>25–35</td>
<td>1 (0.8–1)</td>
</tr>
<tr>
<td>Overweight</td>
<td>25.0-29.9</td>
<td>15–25</td>
<td>0.6 (0.5–0.7)</td>
</tr>
<tr>
<td>Obese (includes all classes)</td>
<td>≥30.0</td>
<td>11–20</td>
<td>0.5 (0.4–0.6)</td>
</tr>
</tbody>
</table>

+ To calculate BMI go to www.nhlbisupport.com/bmi/
* Calculations assume a 0.5–2 kg (1.1–4.4 lbs) weight gain in the first trimester (based on Siega-Riz et al., 1994; Abrams et al., 1995; Carmichael et al., 1997)
Randomized controlled trial (RCT) to decrease the proportion of OW and obese women who exceed the 2009 IOM guidelines
1. Usual Care Group (n=102)
 - Follow advice from physician (no study intervention will be administered)

2. SmartMoms-Clinic (n=102)
 - Intensive lifestyle program
 - Weight, exercise, and food intake data will be obtained via self-report
3. **SmartMoms-Phone (n=102)**
 - Identical materials and recommendations as SmartMoms-Clinic, but delivered via Smartphone
 - Objective energy intake and exercise data obtained automatically from participants’ home environment
We developed a dynamic model to calculate the energy intake required to meet the IOM GWG guidelines.
http://www.pbrc.edu/the-research/tools/GWG-predictor/

- Model generated trimester specific kcal targets
- IOM Recommended zone (green)
- Patient’s wt.
This approach to GWG management has been programmed into an App called SmartMoms.

Subject data are entered into a Web Portal that runs the info through the equations (creates kcal targets, wt. graph).

The output are uploaded via the app onto the subject’s smartphone.

A Clinician Dashboard summarizes and displays data, runs reports, etc. for the counselors (Treatment Delivery).
Barriers and Meal Replacements

- Identifying Barriers
- Typical Barriers and Possible Solutions
- Meal Replacement as a Barrier Solution
- How to Use Meal Replacements
- Activity
- To Do This Week
Clinician Dashboard

<table>
<thead>
<tr>
<th>Date</th>
<th>Week</th>
<th>Actual Weight</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>172.5402183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>172.6248336</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>172.709449</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>172.7940644</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>173.2940644</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>173.7940644</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>174.2940644</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>174.7940644</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>175</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>176</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>177</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>178</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>179</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>180</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>182</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>182</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>184</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>185</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>185</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>185.5</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>185</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>186</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>186.8</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>186</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>187</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>187.5</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>187.8</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>189.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>189.8</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>192</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>194</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interdisciplinary obesity research and the promise of translation: Possible but improbable?

Corby K. Martin, Ph.D.

Pennington Biomedical Research Center
Interdisciplinary obesity research and the promise of translation: Possible and PROBABLE

Corby K. Martin, Ph.D.
Pennington Biomedical Research Center
Interdisciplinary collaborations can be successful

- Applicability appears important
 - Identify the deliverable
 - How will society (hopefully) benefit?
 - Special populations are of interest

- “Translational” research implies translation

- Commercialize or disseminate deliverables as much as possible
• Funding
 • Good science can be funded
 • Be prepared to empirically evaluate your product, method, or intervention
 • Cost-effectiveness analysis (CEA)
 • Comparative effectiveness
Thank you!

Corby.Martin@pbrc.edu
Extras
Our models are sensitive to age-related declines in RMR

Thomas et al., 2011
Both X^2 significant ($p < .001$)
<table>
<thead>
<tr>
<th></th>
<th>Health Info./Control (n=20)</th>
<th>SmartLoss(n=20)</th>
<th>p (between group)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LS Mean ± SEM</td>
<td>LS Mean ± SEM</td>
<td></td>
</tr>
<tr>
<td>Weight change Kg</td>
<td>-0.6 ± 0.5</td>
<td>-7.8 ± 0.5</td>
<td>.0001</td>
</tr>
<tr>
<td>Percent of body weight</td>
<td>-0.6 ± 0.5</td>
<td>-9.4 ± 0.5</td>
<td>.0001</td>
</tr>
<tr>
<td>Systolic Blood Pressure (mm Hg)</td>
<td>-1.2 ± 1.5</td>
<td>-6.5 ± 1.5</td>
<td>.058</td>
</tr>
<tr>
<td>Diastolic Blood Pressure (mm Hg)</td>
<td>0.6 ± 1.8</td>
<td>-4.7 ± 1.8</td>
<td>.11†</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>1.0 ± 1.0</td>
<td>-6.9 ± 1.0</td>
<td>.0001</td>
</tr>
</tbody>
</table>

Note. Asterisks indicate if change within each group differed significantly (*p<.05, ***p<.001). The p-values indicate if change over time differed by treatment group. †Modified by an interaction (the groups differed only after the last month of treatment).