An Estrogen Receptor alpha Functional Mutant is Protective in Murine Lupus

Melissa Cunningham, MD, PhD
Division of Rheumatology and Immunology
Frontiers in Immunotherapeutics Retreat
May 19th, 2015
Lupus and Sex Bias

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that affects skin, joints, kidneys, brain and other organs.

- Patient diagnosed with SLE at age 20 still has a 1 in 6 chance of dying by 35 years of age.

Lupus is a disease that primarily affects women and minorities.

- 90% of those diagnosed are women, the vast majority between the ages of 15 and 45 years old.

- In pre-menarchal and post-menopausal females the ratio is 2:1.

Key unanswered question in lupus:

- What is the mechanism underlying the 9:1 female predominance in this disease?

Contreras et al. Clin Nephrol 2002
Rahman & Isenberg, NEJM, 2008
ERαKO/NZM mice

Females, but not males, had significantly prolonged survival compared to WT.

- Reduced proteinuria
- Lower renal pathology scores
- Lower urea nitrogen
- Higher serum anti-dsDNA levels

Svenson et al., Clinical Immunol, 2008
Toll like receptor (TLR)-induced production of inflammatory cytokines is reduced in ERαKO mice

- In multiple immune cell types, such as DCs, as well as kidney mesangial cells.

Lox = TLR7 agonist
CpG = TLR9 agonist

Cunningham et al., Clin Immunol, 2012
Svenson et al, AJMS, 2014
Hormone levels in ERαKO Mice

- The hormonal profile of ERαKO females is abnormal
- ERαKO females have hypergonadism and partial endocrine sex reversal
 - LH, estradiol and testosterone are all elevated in KOs
ERαKO mice are a functional, not deletional, knockout of ERα

<table>
<thead>
<tr>
<th>Strain Name</th>
<th>Isoform Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>ERα66</td>
</tr>
<tr>
<td></td>
<td>ERα46</td>
</tr>
</tbody>
</table>

[Diagram of ERα isoform structures]
1. To what extent are hormone levels (E2 and T2) impacting the phenotype?

2. Is there a difference between the original *functional* ERα KO and a *deletional* ERα KO?

Ovariectomize mice and administer E2 (and thus correct hypergonadism) to determine the phenotypes of the 2 strains.
NZM Survival

Log rank test p=0.052
Female NZM2410 ERαKO mice were protected from lupus disease expression (effect required E2).

ERα-/- were not protected.
Dipstick albumin at death mg/dL

NZM WT

NZM ERαKO

NZM ERαKO - OVX

NZM ERαKO - OVX + E2

NZM Ex3a - OVX + E2

Proteinuria
Multiple ER\(\alpha\) Splice Variants

ER\(\alpha\) (66kDa) and its N-terminally truncated isoform (46kDa) are both predominantly nuclear transcription factors. Data suggest that the isoforms have different activities:

- Liganded ER\(\alpha\)66 prepares the promoter to respond to ligand through sequentially targeting chromatin remodeling complexes and general transcription factors.
- Liganded ER\(\alpha\)46 recruits co-repressors.

Metivier, et al., EMBO journal, 2004
ERα46 is devoid of AF-1

Similar to the ERα in ERαKO mice we would expect that transactivation would be ineffective in a cell context predominately mediated by AF-1 but activation would still be effective in a cell context sensitive to AF-2.
Bone marrow-derived dendritic cell (BM-DC) numbers are reduced in NZM/ERαKO vs. NZM/Ex3a mice.
Kidney DCs are reduced in ERαKO mice.
Kidney DCs are reduced in ERαKO mice

Percent Positive cells

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percent CD11c+/CD11b+/MHCII+</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT OVX + E2</td>
<td></td>
</tr>
<tr>
<td>ERαKO OVX + E2</td>
<td></td>
</tr>
<tr>
<td>Ex3a OVX + E2</td>
<td></td>
</tr>
</tbody>
</table>

Absolute # CD11c+/CD11b+/MHCII+

<table>
<thead>
<tr>
<th>Condition</th>
<th>Positive cells x 10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT OVX + E2</td>
<td></td>
</tr>
<tr>
<td>ERαKO OVX + E2</td>
<td></td>
</tr>
<tr>
<td>Ex3a OVX + E2</td>
<td></td>
</tr>
</tbody>
</table>
Gene expression and pathway differences between NZM WT and NZM ERαKO DCs by RNAseq

Genes
- IL-6 signaling
- TLR/MyD88 signaling
- Interferon signaling

Pathways
- NFkB pathway
- PI3K/mTOR pathway
- Androgen Receptor signaling
- NOD signaling
- NOTCH signaling
- Cell cycle and apoptosis pathways
Summary

• Female lupus prone ERαKO mice have significantly decreased renal disease and prolonged survival if:
 • They are either unmanipulated (previous study) or
 • They are both OVX’d and estrogen-repleted. Thus, estrogen is required for the protective effect. The phenotype suggests activity of the mutant ERα protein.
 • ERα deficiency (Ex3a) is not protective in the setting of OVX and/or E2 repletion.

• Preliminary flow data revealed that dendritic cell numbers from BM, kidneys, and spleen are reduced in NZM/ERαKO but not NZM/Ex3a animals, which again suggests an inhibitory mechanism of the mutant ERα, rather than requirement of ERα.
Summary

• Given that the mutant ERα is nearly structurally identical to the endogenous ERα46 splice variant, we hypothesize that this small isoform is immune modulatory.

 • Selectively targeting this isoform (with a SERM?) may be protective in lupus

 • Looking for ideas as to how we can exploit this as a therapeutic intervention.

• We are also looking for new ways to look at ERα at the level of the transcriptome – perhaps with ATAC-seq?
Special thanks to:

Gary Gilkeson Gilkeson Lab
Jena Wirth Oates Lab
Jackie Eudaly Zhang Lab
Jen Scott Nowling Lab
Osama Naga M.U.S.C.L.E.

Work was supported by a NIH-NIAMS T32 Training in Inflammatory and Fibrosing Diseases, VA Merit Award, KL2 CTSA CDA and SCTR CGM pilot project award
Retreat Evaluation Form

• We would like your feedback for the retreat today.
• Your feedback is needed to measure the success of the retreat and in planning future retreats.
• Please remember to fill in and return the confidential retreat evaluation form before you leave today.
• You can give the form to us or drop into the ‘evaluation baskets’ in the auditorium/SCTR Table in the lobby.