Fli-1, a master regulator in modulating expression of inflammatory mediators in endothelial cells

John Zhang

Medical University of South Carolina
THE HUMAN ETS GENE FAMILY

Pointed Domain

ETS1
ETS2
ERG2
ELK1
SPI1 (PU.1)
FLI1 (ERGB)
SAP1 (ELK4)
ELF1
SPIB
E4TF1 (GABP)
E1AF (PEA3/ETV4)
PE1 (ETV3)
ERM (ETV5)
TEL (ETV6)
NET (SAP2/ERP/ELK3)
ERF
ETV1 (ER81)
NERF2
MEF
ESX (JEN/ESE/ERT/ELF3)
FEV
EHF (ESE3)
ELF5 (ESE3)
PDEF (ESF/PSE)
TREF (TEL2)

ETS Domain

100 a/a
Fli–1 Transcription Factor

- Two transcriptional activation domains: amino-terminal transactivation domain (ATA) and carboxy-terminal transactivation domain (CTA)
- Removal of CTA domain of Fli–1 reduces \textit{in vitro} transcriptional activation activity by 40–50%

DIAGRAM:
- **PNT** (115-195)
- **ATA** (106-271)
- **ETS Domain** (277-361)
- **CTA** (402-452)
• Glomerulonephritis is a major cause of death in both human and animal models.

• The incidence of renal involvement in lupus patients is from 25-75% depending on the reports. The general consensus is that 60% of lupus patients will develop lupus nephritis at some time.

Overexpression (2-3 fold) of the Fli-1 protein in transgenic mice results in the development of a lupus-like disease, including:

* Autoantibody production including anti-DNA
* Renal deposition of immune complexes
* Hypergammaglobulinemia
* Increased autoreactive T and B cells
* Death due to glomerulonephritis

Fli-1 Gene and lupus autoimmune disease development

• Overexpression of Fli-1 mRNA was found in lymphocytes from active lupus patients compared to normals.

• NZB/NZW mouse splenocytes have higher expression levels of Fli-1 mRNA compared to BALB/c mice.

Decreased expression of Fli-1 in Fli-1+/- NZM2410 mice
Ninety-three percent of Fli-1\(^{+/-}\) NZM2410 mice (n=14) survived to age 52 weeks compared with only 35% of Fli-1\(^{+/+}\) NZM2410 mice (n=23)
Mice were sacrificed at the age of 34 weeks. The kidneys were removed from WT (n=21) and Fli-1+/- (n=18).

<table>
<thead>
<tr>
<th>Genotypes of mice</th>
<th>Infiltrated T cells (10 HPF*)</th>
<th>Infiltrated neutrophil (10 HPF)</th>
<th>Infiltrated macrophages (10 HPF)</th>
<th>Infiltrated B cells (10 HPF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>44.00 ± 7.6</td>
<td>19.57 ± 2.5</td>
<td>58.61±10.5</td>
<td>33.59±5.6</td>
</tr>
<tr>
<td>Fli-1+/-</td>
<td>21.81 ± 6.0</td>
<td>11.00 ± 1.6</td>
<td>20.18±4.6</td>
<td>8.7±2.8</td>
</tr>
<tr>
<td></td>
<td>(P<0.01)</td>
<td>(P<0.01)</td>
<td>(P<0.01)</td>
<td>(P<0.01)</td>
</tr>
</tbody>
</table>
TLRs are critical to the function of the innate immune response
- TLRs recognize pathogen-associated molecular patterns.
- Trigger a strong, sudden immune response
- Expressed on a variety of cells, including immune cells.
- 13 different types of TLRs have been identified in mouse, each recognizing a unique pattern.
Chemokine (C-X-C motif) ligand 2 (CXCL2)

- Chemokine (C-X-C motif) ligand 2 (CXCL2) is a small cytokine (107 amino acids) belonging to the CXC chemokine family that is also called macrophage inflammatory protein 2-alpha (MIP2-alpha), Growth-regulated protein beta (Gro-beta) and Gro oncogene-2 (Gro-2).

- CXCL2 is chemotactic for polymorphonuclear leukocytes and hematopoietic stem cells.

- CXCL2 is 90% identical in amino acid sequence as a related chemokine, CXCL1.

- It has been reported that expression of CXCL2 is regulated by NFkB.
Fli-1 regulates expression of MCP-1, IL-6, and CCL5

Decreased expression of Fli-1 in endothelial cells after transfected with Fli-1 siRNA
Inhibition of Fli-1 resulted in decreased production of CXCL2 in endothelial cells after TLR4 stimulation.
Production of CXCL2 was increased by dose-dependent LPS stimulation
Inhibition of Fli-1 resulted in decreased production of CXCL2 in endothelial cells after TNF-α stimulation.
Fli-1 drives transcription from the CXCL2 promoter
Increased expression of Fli-1 protein with higher amount of plasmid transfected
Fli-1 Binds to the promoter of CXCL2
Structure of Fli-1 Protein

- PNT: 115-195
- ETS Domain: 277-361
- ATA: 106-271
- CTA: 402-452
Fli-1 regulates CXCL2 through direct binding of the promoter.
Inhibition of Fli-1 resulted in decreased production of CXCL2 in human umbilical cord endothelial cells after TLR4 stimulation.
The endothelium is composed of $1-6 \times 10^{13}$ endothelial cells lining a total area of 7000 M^2.

Endothelial cells play an important role in the trafficking of immune cells, as well as inflammation.

A limited research on the role of endothelial cells in response to inflammatory stimulation.
Football is played on a field: 360 by 160 feet (120.0 by 53.3 yards; 109.7 by 48.8 meters.)

\[109.7 \times 48.8 = 5353.36 \text{M}^2\]

\[7000/5353.36 = 1.3\]
Fli-1 transcription factor is novel regulator in modulating inflammatory mediators
Lab members:
Eiji Suzuki
Sarah Williams
Jeremy Mathenia
Eva Karam
Mara Lennard-Richard
Shuzo Sato
Emmanuel Ryes-Cortes
Ivan Molano
Danielle Brandon
Nicole Sztokman
Ning Lou

Collaborators:
Tammy Nowling
Dennis Watson
Gary Gilkeson

Supported by the
National Institutes of Health

NIAMS
National Institute of Arthritis and Musculoskeletal and Skin Diseases
Summary

- Fli-1 is a master regulator in modulating expression of inflammatory mediators in endothelial cells.

- One of the mechanisms that Fli-1 impacts lupus disease is to regulate expression of important inflammatory mediators.

- Manipulating expression of Fli-1 may have therapeutic effects on many inflammatory diseases.
Cytokines, Chemokines

Cytokines: a broad and loose category of small proteins (~5–20 kDa) that are important in cell signaling. They are released by cells and affect the behavior of other cells, and sometimes the releasing cell itself.

Chemokines: a family of small cytokines, or proteins secreted by cells. Their name is derived from their ability to induce directed chemotaxis in nearby responsive cells; they are chemotactic cytokines.
Structure of Chemokines

Structure of chemokine classes

C chemokines

CC chemokines

CXC chemokines

CX3C chemokines

peptide chain

disulphide bridge

hydrophobe domain

mucine-like domain
• We would like your feedback for the retreat today.
• Your feedback is needed to measure the success of the retreat and in planning future retreats.
• Please remember to fill in and return the confidential retreat evaluation form before you leave today.
• You can give the form to us or drop into the ‘evaluation baskets’ in the auditorium/SCTR Table in the lobby.