RESPIRATORY PROTECTION PROGRAM
POLICY

UNIVERSITY RISK MANAGEMENT
Occupational Safety and Health
19 Hagood Avenue, Suite 908
Charleston SC 29425
843-792-3604

Revised: January 2015
TABLE OF CONTENTS

- INTRODUCTION ... 3
- RESPIRATORY HAZARDS .. 3
 - OXYGEN DEFICIENCY ... 3
 - GAS/VAPOR CONTAMINANTS .. 3
 - PARTICULATE CONTAMINANTS ... 4
- CONTROL OF HAZARDS ... 4
- TYPES OF RESPIRATORY EQUIPMENT .. 4
 - AIR-PURIFYING RESPIRATORS ... 4
 - SUPPLY AIR RESPIRATORS .. 5
 - SELF-CONTAINED BREATHING APPARATUS ... 5
- TASKS REQUIRING RESPIRATORY PROTECTION .. 5
- RESPIRATORY FIT TESTING ... 6
- QUALITATIVE FIT TESTING ... 7
 - FIT TEST PROCEDURE FOR N95 RESPIRATORS .. 7
 - FIT TEST PROCEDURES FOR FULL- OR ½ FACE- MASK RESPIRATORS 8
- QUANTITATIVE FIT TESTING .. 8
- USE OF RESPIRATORS ... 8
- INSPECTION, MAINTENANCE AND REPAIR OF RESPIRATORS 9
- MEDICAL SURVEILLANCE ... 9
- TRAINING ... 9
- VOLUNTARY USE OF RESPIRATORS .. 10
INTRODUCTION
The primary objective of MUSC’s Respiratory Program is to prevent atmospheric contamination which can cause occupational diseases by breathing air contaminated with harmful dusts, fogs, fumes, mists, gases, smokes, sprays or vapors. This shall be accomplished as far as feasible by accepted engineering control measures (for example, enclosure or confinement of the operation, general and local ventilation and substitution of less toxic materials). When effective engineering controls are not feasible, or while they are being instituted, appropriate respirators shall be used.

RESPIRATORY HAZARDS
There are four basic categories of Respiratory Hazards:

1. Oxygen Deficiency
2. Gas/Vapor Contaminants
3. Particulate Contaminants
4. Combination gas/vapor and particulate

Oxygen Deficiency
The normal content of oxygen in air is 20% by volume. Oxygen concentrations below 19.5% are considered unsafe because they cause problems with coordination, mental processes, and other body functions. Low oxygen levels can cause death within minutes. Oxygen levels that are between 19.5% and 16.5% are considered "Oxygen Deficient," but are not immediately dangerous to life or health. Any levels below 16.5% are considered "Oxygen Deficient," which means there is not enough oxygen to sustain life and are immediately dangerous to life and health. Some examples include areas where oxygen has been displaced by smoke, areas where an activated CO₂ fire protection system displaces the oxygen in the atmosphere, areas where dangerous concentrations of toxic vapors are present (chemical spills, leaking tanks, etc.), and confined spaces such as manholes and tanks.

Gas/Vapor Contaminants
Gas and vapor contaminants can have adverse effects on the body in two ways:

(a) By reacting with the lung tissue causing pulmonary edema and by directly interfering with the gas transfer functions of the lungs.

(b) By passing into the blood stream affecting other body organs or by prohibiting the blood from providing a sufficient amount of oxygen to body organs.

This hazard group includes, but is not limited to, toxic chemicals such as caustic acid, ethylene oxide, formica glue, formaldehyde and chlorine.
Particulate Contaminants

When considering particulate matter, the size of the particle is an important factor. Particles 10 microns or larger generally do not pose as much of a hazard as smaller particles. Larger particles cannot get into the deeper spaces of the lungs. Particulate contaminate includes materials such as wool dust, wood fibers, cloth lint, asbestos, silica dust, spray paint, welding fumes and bacterial aerosols such as those generated by tuberculosis patients.

CONTROL OF HAZARDS

Hazard control should start at the source. This is feasible when working in a controlled environment such as laboratories where chemicals can be isolated by the use of fume hoods. Sometimes it is impossible to use engineering controls to eliminate the hazard. In these cases, respiratory protection devices will be made available as needed. When working with patients that are known or suspected of having tuberculosis, OSHA requires respiratory protection in addition to engineering controls.

TYPES OF RESPIRATORY EQUIPMENT

The three major categories of respiratory devices are 1) Air-Purifying, 2) Supply Air and 3) Self-Contained.

Air-Purifying Respirators

Air-purifying respirators include mechanical filter respirators, chemical cartridge respirators, and combination mechanical and chemical cartridge respirators.

Mechanical filter respirators protect against dust, mist, fumes and aerosols. These respirators have a face piece with mechanical cartridges, which remove harmful particles as air is pulled through the cartridge. Mechanical filters are efficient for removing particles but offer no protection against gases, vapors or oxygen deficiency.

Chemical cartridge respirators protect against specific vapors and gases. These respirators use cartridges, which contain chemicals that remove harmful gases and vapor. Several limitations apply to chemical respirators:

(a) Do not use a chemical respirator for protection against chemicals, which are extremely toxic in small concentrations. Example: Hydrogen cyanide.

(b) Do not use a chemical respirator for protection against hazardous chemicals, which have high odor threshold levels. Example: Methylene chloride.

(c) Do not use a chemical respirator for protection against hazardous chemicals, which are highly irritating to the eyes.

(d) Do not use a chemical respirator in oxygen deficient atmospheres.
(e) Use chemical cartridges that are specific to the chemical being used.

Combination mechanical and chemical cartridge respirators are used for areas where one might be exposed to both particulates and chemical vapors.

Supply Air Respirators
Supply air respirators are connected to a compressed air source by a hose and air is delivered to the user continuously in sufficient volumes to meet the wearer's breathing requirements. We do not use this type of respiratory protection at MUSC at this time.

Self-Contained Breathing Apparatus
A self-contained breathing apparatus is a type of respiratory equipment, which can be used in oxygen deficient atmospheres and areas where there are high concentrations of toxic gases. Most self-contained breathing apparatus supply up to thirty (30) minutes of air. They are equipped with an audible alarm that sounds when five (5) minutes of breathing air remains. When the alarm sounds, the user should leave the area. Since this type of respirator will generally be used in dangerous atmospheres, there should be another person with the same equipment accompanying the user in case the user needs aid. Additionally, use of a tending line should be considered.

TASKS REQUIRING RESPIRATORY PROTECTION
Respirators are distributed by MUSC's Occupational Safety and Health Programs with the following considerations: type of hazard (vapor, gas, particulate, etc.), level of hazardous material in work areas, working conditions (hot, cold, underground, etc.) and the quality and limitations of the respirator.

The following are examples of the jobs at MUSC that require respiratory protective equipment and the type of respirators to be used. All respirators purchased by MUSC will have a National Institute of Occupational Safety and Health (NIOSH) approval.

<table>
<thead>
<tr>
<th>JOB</th>
<th>TYPE OF RESPIRATOR USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of muriatic acid</td>
<td>Half-face air purifying respirator (organic vapor/acid gas)</td>
</tr>
<tr>
<td>Use of caustic acid</td>
<td>Half-face air purifying respirator (organic vapor/acid gas)</td>
</tr>
<tr>
<td>Changing of ethylene oxide tanks</td>
<td>Full-face air purifying gas canister respirator (type GEMO-SSW)</td>
</tr>
<tr>
<td>Ethylene oxide leaks</td>
<td>Full-face self contained breathing apparatus is required for emergency entry</td>
</tr>
<tr>
<td>Applying formica glue</td>
<td>Half-face air purifying organic vapor respirator</td>
</tr>
<tr>
<td>Cleaning of electrical equipment with gamlin</td>
<td>Half-face air purifying gas organic vapor respirator</td>
</tr>
<tr>
<td>Changing chlorine cylinder</td>
<td>Full-face self-contained breathing apparatus is required for emergency entry</td>
</tr>
<tr>
<td>Working around asbestos</td>
<td>Half-face air purifying chemical cartridge respirator for dust, mist and fumes not to exceed 0.1 f/cc</td>
</tr>
</tbody>
</table>
Safety and Health Manual

Respiratory Protection Program Policy

<table>
<thead>
<tr>
<th>Activity</th>
<th>Respirator Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray or brush painting</td>
<td>Half-face air purifying chemical cartridge for specific pesticides operation</td>
</tr>
<tr>
<td>Spraying pesticides</td>
<td>Half-face air purifying chemical cartridge for specific pesticides operation</td>
</tr>
<tr>
<td>Mercury spills larger than the size of quarter</td>
<td>Air-purifying chemical cartridge respirator</td>
</tr>
<tr>
<td>Welding galvanized material in areas of poor ventilation or confined spaces</td>
<td>Half-face air purifying in chemical cartridge respirator with high efficiency particulate cartridge</td>
</tr>
<tr>
<td>Chemotherapy drug spills</td>
<td>Half-face air purifying mechanical cartridge respirator with high efficiency particulate cartridge</td>
</tr>
<tr>
<td>Work on fume hood exhaust</td>
<td>Full-face air purifying respirator with combination HEPA/organic vapor cartridge</td>
</tr>
<tr>
<td>Work in restricted roof zones</td>
<td>Half-face air purifying respirator with combination HEPA/organic vapor cartridge</td>
</tr>
<tr>
<td>Work in an enclosed area with a suspect or confirmed tuberculosis patient (patient room, EMS vehicle)</td>
<td>Tecnol-N-95 disposable HEPA filtered respirator or powered air purifying respirator (PAPR)</td>
</tr>
<tr>
<td>Performing autopsies on suspected or confirmed tuberculosis patients</td>
<td>Tecnol-N-95 disposable HEPA filtered respirator or powered air purifying respirator (PAPR)</td>
</tr>
<tr>
<td>Work with chemical and biological exposures (Emergency Response Team Only)</td>
<td>3M Breathe Easy Butyl Rubber Hood powered air purifying respirator (PAPR)</td>
</tr>
<tr>
<td>Work with infectious agents in BSL-3 facility</td>
<td>Maxair Premier Hood System powered air purifying respirator (PAPR).</td>
</tr>
</tbody>
</table>

RESPIRATORY FIT TESTING

All employees who intend to wear a respirator must be medically approved before receiving a respirator. Employee Health Services will perform pulmonary lung function testing to determine if employees have the lung capacity to work and wear a respirator. Employees wearing the Tecnol N-95 respirator for working with suspect or confirmed TB patients will only be required to complete a medical questionnaire.

Fit Testing of new employees wearing a Tecnol N-95 will be fit-tested at Employee Health. Annual fitting of employees wearing Tecnol N-95 will be conducted by the unit's designated “Train the Trainer” or by Occupational Safety and Health and Risk Management. Formal fit testing will be conducted by Employee Health Services.
Employees wearing a powered air-purifying respirator specifically designed for working with suspect or confirmed tuberculosis patients will not be required to pass a formal fit test. However, they must be trained on the proper use of the respirator.

Facial hair lying between the sealing surface of a respirator face-piece and the wearer’s skin will prevent a good seal. Therefore, employees with facial hair such as sideburns, beards or mustaches, which protrude into the sealing surface of the respirator, will be refused initial fitting and prohibited from using a previously fitted respirator.

Supervisors will be responsible for prohibiting their employees from wearing a respirator unless they have satisfactorily completed a formal fit testing and continue to meet the facial hair limitations. Employees not wearing a respirator when hazardous operations require the use of a respirator will receive disciplinary action, which can result in termination.

Employees must be fit tested annually if using a negative pressure respirator. Annual fit testing is also required for the Tecnol N-95 respirators.

Qualitative Fit Testing
A qualitative fit test relies on a person’s sense of smell and taste to determine if a respirator fits properly. If the employee does not smell or taste the test solution during the test, the respirator has achieved a proper seal and fits correctly. If the employee does smell or taste the test solution, then a proper seal has not been achieved and the test must be performed again with a different size or type respirator until a proper fit has been achieved.

Fit Test Procedure for N95 Respirators
- Challenge Test: A challenge test must be performed at the initial fit test for a new employee, or at subsequent fit tests for an employee who does not remember the taste of the bitters solution. When the fit-testing hood is over the employee’s head, insert the nebulizer with the sensitivity solution (diluted bitters solution) into the hood port. Deliver several pumps of sensitivity solution into the hood. The employee should taste the sensitivity solution.

After the employee is familiar with the taste of the bitters solution, the following fit-test procedures should be performed:
- Employee will don the respirator.
- Fit Tester will place the fit-testing hood over the employee’s head.
- The nebulizer with the fit test solution (Bitrex) Solution will be inserted into the port of the hood and pumped several times.
- The employee will read the “Rainbow Passage” aloud.
Rainbow Passage
When the sunlight strikes raindrops in the air, they act like a prism and form a rainbow. The rainbow is a division of white light into many beautiful colors. These take the shape of a long round arch, with its path high above, and its two ends apparently beyond the horizon. There is, according to legend, a boiling pot of gold at one end. People look, but no one ever finds it. When a man looks for something beyond reach, his friends say he is looking for the pot of gold at the end of the rainbow.

Fit Test Procedures for Full- or ½ Face- Mask Respirators
- Respirators will be equipped with high-efficiency particulate air (HEPA) cartridges.
- Employee will don the respirator and wear it for 10 minutes before starting fit-test.
- Employees will be advised that the test smoke may be irritating to their eyes and to keep their eyes closed while being tested.
- The employee will sit inside a fit-testing hood enclosure.
- The individual giving the fit-test will instruct the respirator wearer to breathe normally for 60 seconds while injecting irritant smoke around the sealing surface of the respirator. If no leakage is detected, the tester will ask the wearer to do light exercise like turning his/her head, walking in place and talking for an additional 60 seconds. If any leakage is indicated, the test will be canceled. At this time, the respirator will be inspected for defects. If leakage occurs again, a different brand or size respirator will be tried.

Quantitative Fit Testing
Quantitative fit testing uses numerical values to determine whether or not a proper seal and fit of a respirator is achieved. A PortaCount machine measures the number of particles in the air verses the number of particles that leak into the respirator. This type of fit testing will be used for certain respirators.

USE OF RESPIRATORS
Every MUSC employee who is required to wear a respirator will be given instructions on how the respirator should be worn, how to adjust it and how to determine if it fits correctly during normal fit checking.

Before an employee enters a hazardous area, he/she must perform a user seal check to assure a proper fit. User seal check is defined as “an action conducted by the respirator used to determine if the respirator is properly sealed to the face.” Such a check is performed by the user each time the respirator is donned or adjusted to ensure
that the tight fitted respirator is properly sealed on the users face; i.e., that the proper seal has been achieved.

INSPECTION, MAINTENANCE AND REPAIR OF RESPIRATORS

A very important part of our respiratory protection program is inspection, maintenance and repair of equipment. An inspection by the respirator wearer should be made before and after using the respirator. Inspections should be performed on respirators on a monthly basis even if it has not been used routinely.

Inspections shall include a check of the tightness of connections between the face-piece, headbands, valves, connecting tubes, and canister. Rubber or elastic parts shall be inspected for pliability and signs of deterioration. Stretching and manipulating rubber parts with a massaging action will keep them pliable and flexible. To ensure that these inspections take place, the supervisor is responsible for keeping records of the monthly inspections. Records shall include the date of inspection and general condition of the respirator. After using a respirator, the wearer shall clean the respirator with a Isopropanol wipe pad (contains 70% Isopropanol). If a respirator shows signs of wear or has defective parts, it will be turned into the Occupational Safety and Health Division. When storing a respirator, place it in the original plastic bag and box to protect it against dust and sunlight. Also, avoid storing a respirator in extreme heat or cold and excessive moisture.

Tecnol N-95 respirators are to be used for one shift only. If the Tecnol N-95 respirator becomes contaminated with patients’ blood or body fluid at any time, dispose of it in the infectious waste stream immediately and don a new respirator. At the end of shift, discard the respirator in the infectious waste stream and always retrieve new one at beginning of shift.

MEDICAL SURVEILLANCE

On a yearly basis, every employee required to wear a respirator* will be provided an occupational health physical conducted by Employee Health Services. The purpose of this physical is to determine if the employee is medically capable of wearing a respirator and to establish a health baseline for comparison in future years. Pulmonary lung function testing, to include forced vital capacity and forced expiratory volume at one second, will be performed as well as any other tests deemed appropriate by the examining physician.

*Employees using disposable respirators for protection against tuberculosis will only complete an annual medical questionnaire. If employee answers “yes” to one of the questions, he/she must be approved to wear an N-95 by Employee Health Services.

TRAINING

It is important that all employees and their supervisors whose job description requires the use of respiratory protection be instructed on the proper use and limitations of the respirators. The Occupational Safety and Health Administration requires all employees be trained in the proper use of the respirator assigned to them. Areas that will be covered in respirator training include:
(a) An explanation of the respiratory hazard and what happens if the respirator is not used properly.

(b) An explanation of why engineering controls are not used and why respirators are needed for protection.

(c) An explanation of why a particular type of respirator has been selected.

(d) Capabilities and limitations of selected respirators.

(e) An explanation of how to wear and how to check for fit and operation.

(f) Instructions on maintenance.

(g) A fit-testing procedure.

VOLUNTARY USE OF RESPIRATORS

The following respirators may be used voluntarily at MUSC when not required by the OSHA standard:

- N-95%
- R-99%
- P-99.97%

The OSHA Respiratory Protection Regulation (standard 1910.134), Appendix D, provides information for employees using respirators when not required under the standard:

“Respirators are an effective method of protection against designated hazards when properly selected and worn. Respirator use is encouraged, even when exposures are below the exposure limit, to provide an additional level of comfort and protection for workers. However, if a respirator is used improperly or not kept clean, the respirator itself can become a hazard to the worker. Sometimes, workers may wear respirators to avoid exposures to hazards, even if the amount of hazardous substance does not exceed the limits set by OSHA standards. If your employer provides respirators for your voluntary use, or if you provide your own respirator, you need to take certain precautions to be sure that the respirator itself does not present a hazard.

You should do the following:

- Read and heed all instructions provided by the manufacturer on use, maintenance, cleaning and care, and warnings regarding the respirators limitations.
• Choose respirators certified for use to protect against the contaminant of concern. NIOSH, the National Institute for Occupational Safety and Health of the U.S. Department of Health and Human Services, certifies respirators. A label or statement of certification should appear on the respirator or respirator packaging. It will tell you what the respirator is designed for and how much it will protect you.

• Do not wear respirators into atmospheres containing contaminants for which your respirator is not designed to protect against. For example, a respirator designed to filter dust particles will not protect you against gases, vapors, or very small solid particles of fumes or smoke.

• Keep track of your respirator so that you do not mistakenly use someone else’s respirator."